FEATool Multiphysics
v1.17.0
Finite Element Analysis Toolbox
|
EX_HEATTRANSFER10 Conjugate heat transfer test example with multiple domains.
[ FEA, OUT ] = EX_HEATTRANSFER10( VARARGIN ) Sets up and solves a multiple domain conjugate heat transfer example.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.0005} Max grid cell size sf_u string {sflag2} Shape function for velocity sf_p string {sflag1} Shape function for pressure sf_T string {sflag1} Shape function for temperature solver string openfoam/fenics/{} Use OpenFOAM, FEniCS, or default solver iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'hmax', 1/10; 'sf_u', 'sflag1'; 'sf_p', 'sflag1'; 'sf_T', 'sflag1'; 'turb', []; 'solver', ''; 'iplot', 1; 'tol', 0.1; 'fid', 1 }; [got,opt] = parseopt( cOptDef, varargin{:} ); fid = opt.fid; % Geometry definition. fea.sdim = { 'x' 'y' }; fea.geom.objects = { gobj_rectangle(0, 1, 0, 0.5), ... gobj_rectangle(0, 1, 0.5, 1, 'R2') }; % Grid generation. n = round(1/opt.hmax); fea.grid = gridmerge( rectgrid(2*n, n, [0, 1; 0, 0.5]), 3, rectgrid(2*n, n, [0, 1; 0.5, 1]), 1); fea.grid.s( selcells(fea,'y >= 0.5') ) = 2; fea.grid = gridbdrx(fea.grid); % Problem definition. fea = addphys(fea,@navierstokes); % Add Navier-Stokes equations physics mode. fea.phys.ns.eqn.coef{1,end} = {1, 1000}; fea.phys.ns.eqn.coef{2,end} = {1, 959e-6}; fea.phys.ns.prop.active(:,1) = 0; fea.phys.ns.bdr.sel(6) = 2; fea.phys.ns.bdr.coef{2,end}{1,6} = 0.00001; fea.phys.ns.bdr.sel(4) = 4; fea = addphys(fea,@heattransfer); % Add heat transfer physics mode. fea.phys.ht.eqn.coef{1,end} = {8000, 1000}; fea.phys.ht.eqn.coef{2,end} = {450, 4181}; fea.phys.ht.eqn.coef{3,end} = {80, 4181*959e-6/6.62}; fea.phys.ht.eqn.coef{4,end} = {0, 'u'}; fea.phys.ht.eqn.coef{5,end} = {0, 'v'}; fea.phys.ht.bdr.sel([1,6]) = 1; fea.phys.ht.bdr.coef{1,end}{1} = 400; fea.phys.ht.bdr.coef{1,end}{6} = 300; fea.phys.ht.bdr.sel([2,3,5]) = 3; fea.phys.ht.eqn.coef{end}{1} = 300; fea.phys.ht.eqn.coef{end}{2} = 300; % Parse and solve problem. fea = parsephys(fea); fea = parseprob(fea); if( strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', fid ); elseif( strcmp(opt.solver,'openfoam') ) fea.sol.u = openfoam( fea, 'fid', fid, 'ddtScheme', 'CrankNicolson', 'endTime', 1e5, 'maxDeltaT', 1e5/100, 'nproc', 1, 'turb', opt.turb ); else fea.sol.u = solvestat( fea, 'fid', fid, 'maxnit', 50 ); end % Postprocessing. if( opt.iplot>0 ) figure subplot(1,2,1) postplot( fea, 'surfexpr', 'sqrt(u^2+v^2)', 'arrowexpr', {'u' 'v'} ) title('Velocity field') subplot(1,2,2) postplot( fea, 'surfexpr', 'T' ) title('Temperature') end % Average temperature at outlet. out.ref = [1.4111e-5, 309.7998, 394.3849]; out.val = [evalexpr('u',[1;0.75],fea), ... evalexpr('T',[1;0.75],fea), ... evalexpr('T',[1;0.5],fea)]; out.err = abs(out.val - out.ref)./out.ref; out.pass = all(out.err < opt.tol); if( nargout==0 ) clear fea out end