FEATool Multiphysics  v1.16.6
Finite Element Analysis Toolbox
ex_heattransfer4.m File Reference

Description

EX_HEATTRANSFER4 2D Heat transfer with convective cooling.

[ FEA, OUT ] = EX_HEATTRANSFER4( VARARGIN ) NAFEMS T4 benchmark example for two dimensional heat transfer with convective heat flux boundary conditions.

 _            q_n=h*(T_amb-T)
 ^        +--------+
 |        |        |
 |  q_n=0 |        | q_n=h*(T_amb-T)
1m        |        |
 |        |   T(0.6,0.2)?
 |        |        |
 v        +--------+
             T=100

          |<-0.6m->|

A 0.6 by 1 m iron plate, with density 7850 kg/m^3, heat capacity 460 J/kgC, and thermal conductivity 52 W/mC, is prescribed a fixed temperature of T = 100 C at the bottom edge. The left side is insulated, and the right and top boundaries exposed to convective cooling with a heat transfer coefficient h = 750 W/m^2K. The steady state temperature at the point (0.6,0.2) is sought when the surrounding ambient temperature is T_amb = 0 C.

Reference
  [1] Cameron AD, Casey JA, Simpson GB. Benchmark Tests for Thermal Analysis,
      The National Agency for Finite Element Standards, UK, 1986.

Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
hmax        scalar {0.025}         Grid cell size
igrid       scalar {0}/1/2         Cell type (0=quadrilaterals, 1=triangles,
                                   2=triangles converted from quadrilaterals)
sfun        string {sflag1}        Finite element shape function
solver      string fenics/{}       Use FEniCS or default solver
istat       scalar {1}/0           Use stationary (=1), or time dependent solver
iplot       scalar {1}/1           Plot solution (=1)
                                                                                  .
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct

Code listing

 cOptDef = { 'hmax',     0.025;
             'igrid',    0;
             'sfun',     'sflag1';
             'solver',   '';
             'istat',    1;
             'iplot',    1;
             'tol',      1e-2;
             'fid',      1 };
 [got,opt] = parseopt(cOptDef,varargin{:});


% Geometry definition.
 gobj = gobj_rectangle( 0, 0.6, 0, 1 );
 fea.geom.objects = { gobj };


% Grid generation.
 switch opt.igrid
   case 0
     fea.grid = rectgrid( round(0.6/opt.hmax), round(1/opt.hmax), [0 0.6;0 1] );
   case 1
     fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', opt.fid );
   case 2
     fea.grid = rectgrid( round(0.6/opt.hmax), round(1/opt.hmax), [0 0.6;0 1] );
     fea.grid = quad2tri( fea.grid, 1 );
 end


% Problem definition.
 fea.sdim  = { 'x', 'y' };             % Space coordinate name.
 fea = addphys( fea, @heattransfer );  % Add heat transfer physics mode.
 fea.phys.ht.sfun = { opt.sfun };      % Set shape function.

% Equation coefficients.
 fea.phys.ht.eqn.coef{1,end} = 7850;   % Density
 fea.phys.ht.eqn.coef{2,end} =  460;   % Heat capacity.
 fea.phys.ht.eqn.coef{3,end} =   52;   % Thermal conductivity.
 fea.phys.ht.eqn.coef{7,end} = { 0 };  % Initial temperature.

% Boundary conditions.
 fea.phys.ht.bdr.sel = [1 4 4 3];
 fea.phys.ht.bdr.coef{1,end}   = { 100 [] [] [] };
 fea.phys.ht.bdr.coef{4,end}{2}{2} = 750;
 fea.phys.ht.bdr.coef{4,end}{3}{2} = 750;


% Parse physics modes and problem struct.
 fea = parsephys(fea);
 fea = parseprob(fea);


% Compute solution.
 if( strcmp(opt.solver,'fenics') )
   fea = fenics( fea, 'fid', opt.fid, ...
                 'tstep', 100, 'tmax', 20000, 'ischeme', 2*(~opt.istat) );
 else
   if( opt.istat )
     fea.sol.u = solvestat( fea, 'fid', opt.fid, 'init', {'T0_ht'} );
   else
     [fea.sol.u, tlist] = solvetime( fea, 'fid', opt.fid, 'init', {'T0_ht'}, ...
                                     'tmax', 20000, 'tstep', 100, 'toldef', 1e-4, 'maxnit', 5 );
   end
 end


% Postprocessing.
 if( opt.iplot>0 )
   postplot( fea, 'surfexpr', 'T', 'isoexpr', 'T' )
   title('Temperature, T')
 end


% Error checking.
 T_sol = evalexpr( 'T', [0.6;0.2], fea );
 T_ref = 18.3;
 out.err  = abs(T_sol-T_ref)/T_ref;
 out.pass = out.err<opt.tol;


 if( nargout==0 )
   clear fea out
 end