FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_HEATTRANSFER4 2D Heat transfer with convective cooling.
[ FEA, OUT ] = EX_HEATTRANSFER4( VARARGIN ) NAFEMS T4 benchmark example for two dimensional heat transfer with convective heat flux boundary conditions.
_ q_n=h*(T_amb-T) ^ +--------+ | | | | q_n=0 | | q_n=h*(T_amb-T) 1m | | | | T(0.6,0.2)? | | | v +--------+ T=100 |<-0.6m->|
A 0.6 by 1 m iron plate, with density 7850 kg/m^3, heat capacity 460 J/kgC, and thermal conductivity 52 W/mC, is prescribed a fixed temperature of T = 100 C at the bottom edge. The left side is insulated, and the right and top boundaries exposed to convective cooling with a heat transfer coefficient h = 750 W/m^2K. The steady state temperature at the point (0.6,0.2) is sought when the surrounding ambient temperature is T_amb = 0 C.
[1] Cameron AD, Casey JA, Simpson GB. Benchmark Tests for Thermal Analysis, The National Agency for Finite Element Standards, UK, 1986.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.025} Grid cell size igrid scalar {0}/1/2 Cell type (0=quadrilaterals, 1=triangles, 2=triangles converted from quadrilaterals) sfun string {sflag1} Finite element shape function solver string fenics/{} Use FEniCS or default solver istat scalar {1}/0 Use stationary (=1), or time dependent solver iplot scalar {1}/1 Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'hmax', 0.025; 'igrid', 0; 'sfun', 'sflag1'; 'solver', ''; 'istat', 1; 'iplot', 1; 'tol', 1e-2; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); % Geometry definition. gobj = gobj_rectangle( 0, 0.6, 0, 1 ); fea.geom.objects = { gobj }; % Grid generation. switch opt.igrid case 0 fea.grid = rectgrid( round(0.6/opt.hmax), round(1/opt.hmax), [0 0.6;0 1] ); case 1 fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', opt.fid ); case 2 fea.grid = rectgrid( round(0.6/opt.hmax), round(1/opt.hmax), [0 0.6;0 1] ); fea.grid = quad2tri( fea.grid, 1 ); end % Problem definition. fea.sdim = { 'x', 'y' }; % Space coordinate name. fea = addphys( fea, @heattransfer ); % Add heat transfer physics mode. fea.phys.ht.sfun = { opt.sfun }; % Set shape function. % Equation coefficients. fea.phys.ht.eqn.coef{1,end} = 7850; % Density fea.phys.ht.eqn.coef{2,end} = 460; % Heat capacity. fea.phys.ht.eqn.coef{3,end} = 52; % Thermal conductivity. fea.phys.ht.eqn.coef{7,end} = { 0 }; % Initial temperature. % Boundary conditions. fea.phys.ht.bdr.sel = [1 4 4 3]; fea.phys.ht.bdr.coef{1,end} = { 100 [] [] [] }; fea.phys.ht.bdr.coef{4,end}{2}{2} = 750; fea.phys.ht.bdr.coef{4,end}{3}{2} = 750; % Parse physics modes and problem struct. fea = parsephys(fea); fea = parseprob(fea); % Compute solution. if( strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', opt.fid, ... 'tstep', 100, 'tmax', 20000, 'ischeme', 2*(~opt.istat) ); else if( opt.istat ) fea.sol.u = solvestat( fea, 'fid', opt.fid, 'init', {'T0_ht'} ); else [fea.sol.u, tlist] = solvetime( fea, 'fid', opt.fid, 'init', {'T0_ht'}, ... 'tmax', 20000, 'tstep', 100, 'toldef', 1e-4, 'maxnit', 5 ); end end % Postprocessing. if( opt.iplot>0 ) postplot( fea, 'surfexpr', 'T', 'isoexpr', 'T' ) title('Temperature, T') end % Error checking. T_sol = evalexpr( 'T', [0.6;0.2], fea ); T_ref = 18.3; out.err = abs(T_sol-T_ref)/T_ref; out.pass = out.err<opt.tol; if( nargout==0 ) clear fea out end