FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_POISSON7 Poisson equation on a unit circle with a point source.
[ FEA, OUT ] = EX_POISSON7( VARARGIN ) Poisson equation on a unit circle with a point source (represented by a point constraint) and exact solution u = -1/(2*pi)*log(r). Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.1} Max grid cell size (<0 quadrilateral grid) sfun string {sflag1} Shape function iphys scalar 0/{1} Use physics mode to define problem (=1) or directly define fea.eqn/bdr fields (=0) solver string fenics/{default} Use FEniCS or default solver iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'hmax', 0.02; 'refsol', '-1/(2*pi)*log(sqrt(x^2+y^2))'; 'sfun', 'sflag1'; 'iphys', 1; 'solver', ''; 'iplot', 1; 'tol', 0.2; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Geometry definition. fea.geom.objects = { gobj_circle() }; % Grid generation. if( opt.hmax<0 ) fea.grid = circgrid(10); else hmax = opt.hmax; fh = @(p,varargin) 3*hmax + (p(:,1).^2+p(:,2).^2); fea.grid = gridgen( fea, 'hmax', hmax, 'fid', fid, 'fixpnt', [0 0], 'hdfcn', fh ) ; end % Problem definition. fea.sdim = { 'x' 'y' }; % Coordinate names. if( opt.iphys==1 ) fea = addphys( fea, @poisson ); % Add Poisson equation physics mode. fea.phys.poi.sfun = { opt.sfun }; % Set shape function. fea.phys.poi.eqn.coef{3,4} = { 0 }; % Set source term coefficient. fea = parsephys(fea); % Check and parse physics modes. else fea.dvar = { 'u' }; % Dependent variable name. fea.sfun = { opt.sfun }; % Shape function. % Define equation system. fea.eqn.a.form = { [2 3;2 3] }; % First row indicates test function space (2=x-derivative + 3=y-derivative), % second row indicates trial function space (2=x-derivative + 3=y-derivative). fea.eqn.a.coef = { 1 }; % Coefficient used in assembling stiffness matrix. fea.eqn.f.form = { 1 }; % Test function space to evaluate in right hand side (1=function values). fea.eqn.f.coef = { 0 }; % Coefficient used in right hand side. % Define boundary conditions. n_bdr = max(fea.grid.b(3,:)); fea.bdr.d = cell(1,n_bdr); [fea.bdr.d{:}] = deal(0); % Assign zero to all boundaries (Dirichlet). fea.bdr.n = cell(1,n_bdr); % No Neumann boundaries ('fea.bdr.n' empty). end % Set point constraint. [~,i_mid] = min( fea.grid.p(1,:).^2 + fea.grid.p(2,:).^2 ); fea.pnt.index = i_mid; fea.pnt.type = 'source'; fea.pnt.dvar = 1; fea.pnt.expr = 1; % Parse and solve problem. fea = parseprob( fea ); % Check and parse problem struct. if( strcmp(opt.solver,'fenics') ) fea = fenics( fea ); else fea.sol.u = solvestat( fea, 'fid', fid ); % Call to stationary solver. end % Postprocessing. s_err = ['abs(',opt.refsol,'-u)']; if( opt.iplot>0 ) figure subplot(3,1,1) postplot( fea, 'surfexpr', 'u', 'surfhexpr', 'u', 'axequal', 'on' ) title('Solution u') subplot(3,1,2) postplot( fea, 'surfexpr', opt.refsol, 'surfhexpr', opt.refsol, 'axequal', 'on' ) title('Exact solution') subplot(3,1,3) postplot( fea, 'surfexpr', s_err, 'surfhexpr', s_err, 'axequal', 'on' ) title('Error') end % Error checking. if ( size(fea.grid.c,1)==4 ) xi = [0;0]; else xi = [1/3;1/3;1/3]; end err = evalexpr0(s_err,xi,1,1:size(fea.grid.c,2),[],fea); ref = evalexpr0('u',xi,1,1:size(fea.grid.c,2),[],fea); err = sqrt(sum(err.^2)/sum(ref.^2)); if( ~isempty(fid) ) fprintf(fid,'\nL2 Error: %f\n',err) fprintf(fid,'\n\n') end out.err = err; out.pass = out.err<opt.tol; if( nargout==0 ) clear fea out end