FEATool Multiphysics  v1.16.6
Finite Element Analysis Toolbox
ex_poisson7.m File Reference

Description

EX_POISSON7 Poisson equation on a unit circle with a point source.

[ FEA, OUT ] = EX_POISSON7( VARARGIN ) Poisson equation on a unit circle with a point source (represented by a point constraint) and exact solution u = -1/(2*pi)*log(r). Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
hmax        scalar {0.1}           Max grid cell size (<0 quadrilateral grid)
sfun        string {sflag1}        Shape function
iphys       scalar 0/{1}           Use physics mode to define problem    (=1)
                                   or directly define fea.eqn/bdr fields (=0)
solver      string fenics/{default} Use FEniCS or default solver
iplot       scalar 0/{1}           Plot solution (=1)
                                                                                  .
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct

Code listing

 cOptDef = { ...
   'hmax',     0.02;
   'refsol',   '-1/(2*pi)*log(sqrt(x^2+y^2))';
   'sfun',     'sflag1';
   'iphys',    1;
   'solver',   '';
   'iplot',    1;
   'tol',      0.2;
   'fid',      1 };
 [got,opt] = parseopt(cOptDef,varargin{:});
 fid       = opt.fid;


% Geometry definition.
 fea.geom.objects = { gobj_circle() };


% Grid generation.
 if( opt.hmax<0 )
   fea.grid = circgrid(10);
 else
   hmax      = opt.hmax;
   fh        = @(p,varargin) 3*hmax + (p(:,1).^2+p(:,2).^2);
   fea.grid  = gridgen( fea, 'hmax', hmax, 'fid', fid, 'fixpnt', [0 0], 'hdfcn', fh ) ;
 end


% Problem definition.
 fea.sdim  = { 'x' 'y' };                % Coordinate names.
 if( opt.iphys==1 )

   fea = addphys( fea, @poisson );       % Add Poisson equation physics mode.
   fea.phys.poi.sfun = { opt.sfun };     % Set shape function.
   fea.phys.poi.eqn.coef{3,4} = { 0 };   % Set source term coefficient.
   fea = parsephys(fea);                 % Check and parse physics modes.

 else

   fea.dvar  = { 'u' };                  % Dependent variable name.
   fea.sfun  = { opt.sfun  };            % Shape function.

% Define equation system.
   fea.eqn.a.form = { [2 3;2 3] };       % First row indicates test function space   (2=x-derivative + 3=y-derivative),
% second row indicates trial function space (2=x-derivative + 3=y-derivative).
   fea.eqn.a.coef = { 1 };               % Coefficient used in assembling stiffness matrix.

   fea.eqn.f.form = { 1 };               % Test function space to evaluate in right hand side (1=function values).
   fea.eqn.f.coef = { 0 };               % Coefficient used in right hand side.

% Define boundary conditions.
   n_bdr         = max(fea.grid.b(3,:));
   fea.bdr.d     = cell(1,n_bdr);
  [fea.bdr.d{:}] = deal(0);              % Assign zero to all boundaries (Dirichlet).

   fea.bdr.n     = cell(1,n_bdr);        % No Neumann boundaries ('fea.bdr.n' empty).

 end


% Set point constraint.
 [~,i_mid] = min( fea.grid.p(1,:).^2 + fea.grid.p(2,:).^2 );
 fea.pnt.index = i_mid;
 fea.pnt.type  = 'source';
 fea.pnt.dvar  = 1;
 fea.pnt.expr  = 1;


% Parse and solve problem.
 fea = parseprob( fea );               % Check and parse problem struct.
 if( strcmp(opt.solver,'fenics') )
   fea = fenics( fea );
 else
   fea.sol.u = solvestat( fea, 'fid', fid );   % Call to stationary solver.
 end


% Postprocessing.
 s_err = ['abs(',opt.refsol,'-u)'];
 if( opt.iplot>0 )
   figure
   subplot(3,1,1)
   postplot( fea, 'surfexpr', 'u', 'surfhexpr', 'u', 'axequal', 'on' )
   title('Solution u')

   subplot(3,1,2)
   postplot( fea, 'surfexpr', opt.refsol, 'surfhexpr', opt.refsol, 'axequal', 'on' )
   title('Exact solution')

   subplot(3,1,3)
   postplot( fea, 'surfexpr', s_err, 'surfhexpr', s_err, 'axequal', 'on' )
   title('Error')
 end


% Error checking.
 if ( size(fea.grid.c,1)==4 )
   xi = [0;0];
 else
   xi = [1/3;1/3;1/3];
 end
 err = evalexpr0(s_err,xi,1,1:size(fea.grid.c,2),[],fea);
 ref = evalexpr0('u',xi,1,1:size(fea.grid.c,2),[],fea);
 err = sqrt(sum(err.^2)/sum(ref.^2));

 if( ~isempty(fid) )
   fprintf(fid,'\nL2 Error: %f\n',err)
   fprintf(fid,'\n\n')
 end


 out.err  = err;
 out.pass = out.err<opt.tol;
 if( nargout==0 )
   clear fea out
 end