Surface Currents in a Circular Wire
Skin effect is a phenomenon where an alternating current tends to flow and distribute itself along the surface layer or outside skin of a conductor. This effect can for example be taken advantage of in power transmission applications by layering inexpensive conductor materials (for example aluminium) with a thin layer …
Microstrip Transmission Line
A shielded electrical microstrip transmission line is fixed to a substrate and placed in a shielded container of air. The simulation applies a known voltage to the strip to calculate the resulting capacitance and compares this with the theoretical result. The problem assumes symmetry in the lengthwise direction so that …
Stress Distribution in a Solenoid
This multiphysics model examines how magnetic forces give rise to stresses in a long thick cylindrical solenoid. A current density of 106 A/m2 is running through a wound coil with 1 cm inner to 2 cm outer radii. The material of the coil is assumed to have a modulus of elasticity of 1.075⋅1011 N/m2 and Poisson’s …
Inductance in Parallel Wires
This example calculates the inductance between parallel wires. Two 1 m wires with 4 mm radius 1 A current are placed 0.5 m apart in a large domain of non-conducting air or vacuum. The inductance is computed with both using the magnetic field energy and flux linkage, and compared against the analytical solution L = …
Conducting Sphere
This verification example considers a perfectly conducting sphere placed between two charged capacitor plates. An axisymmetric solution for the electrostatic potential is compared with a full 3D one, and verified against the analytical solution U(xi) = E0*(r3/xi2 - xi), where the electrical field is the potential …
Thermal Bridge
This is a benchmark test case for modeling the steady-state temperature distribution in a thermal bridge in building construction. The model consists of a 6 mm concrete slab subjected to an outside temperature of 0 °C and heat loss due to convection. The inside features a 4 cm layer of air enclosed within a 1.5 mm …
Fluid-Structure Interaction - Elastic Beam
Fluid-structure interaction benchmark problem for stationary, laminar, and incompressible flow around a cylinder with an attached elastic beam. Although it is not possible to derive an analytical solution to these test cases, numerical solutions to benchmark reference quantities have been established for the beam …
Piezo Electric Bending of a Beam
Multiphysics simulation of piezoelectric bending of a laminated beam as for example can be found in actuators for MEMS (micro electro mechanical systems) devices. The model features coupled plane-stress and electrostatics physics modes with equations modified to account for the anisotropic piezo-electric coupling. The …
Flow in Porous Media
Axisymmetric laminar fluid flow in a diffusor duct or reaction chamber blocked by sections of a porous material. The model features several partially active subdomains with the Brinkman equations governing the fluid flow. The flow field with and without the porous material is compared. This model is available as an …
Magnetic Field Around a Permanent Magnet
Example of simulation and visualization of the two-dimensional static magnetic potential field around a u-shaped permanent magnet. This model is available as an automated tutorial by selecting Model Examples and Tutorials… > from the File menu. Or alternatively, follow the linked step-by-step instructions. …