
Citation: Le, T.-T.-H.; Kang, H.; Kim,

H. Towards Incompressible Laminar

Flow Estimation Based on

Interpolated Feature Generation and

Deep Learning. Sustainability 2022,

14, 11996. https://doi.org/

10.3390/su141911996

Academic Editor: Wen Cheng Liu

Received: 16 August 2022

Accepted: 19 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Towards Incompressible Laminar Flow Estimation Based on
Interpolated Feature Generation and Deep Learning
Thi-Thu-Huong Le 1,* , Hyoeun Kang 2 and Howon Kim 2,*

1 IoT Research Center, Pusan National University, Busan 609735, Korea
2 School of Computer Science and Engineering, Pusan National University, Busan 609735, Korea
* Correspondence: lehuong7885@gmail.com (T.-T.-H.L.); howonkim@pusan.ac.kr (H.K.)

Abstract: For industrial design and the improvement of fluid flow simulations, computational fluid
dynamics (CFD) solvers offer practical functions and conveniences. However, because iterative
simulations demand lengthy computation times and a considerable amount of memory for sophisti-
cated calculations, CFD solvers are not economically viable. Such limitations are overcome by CFD
data-driven learning models based on neural networks, which lower the trade-off between accurate
simulation performance and model complexity. Deep neural networks (DNNs) or convolutional
neural networks (CNNs) are good illustrations of deep learning-based CFD models for fluid flow
modeling. However, improving the accuracy of fluid flow reconstruction or estimation in these
earlier methods is crucial. Based on interpolated feature data generation and a deep U-Net learning
model, this work suggests a rapid laminar flow prediction model for inference of Naiver–Stokes
solutions. The simulated dataset consists of 2D obstacles in various positions and orientations,
including cylinders, triangles, rectangles, and pentagons. The accuracy of estimating velocities and
pressure fields with minimal relative errors can be improved using this cutting-edge technique in
training and testing procedures. Tasks involving CFD design and optimization should benefit from
the experimental findings.

Keywords: CFD (computational fluid dynamics); laminar flow; Naiver–Stokes equation; simulation;
interpolation; U-Net

1. Introduction

Computational fluid dynamics (CFD) simulations are employed in several fields, such
as mechanical engineering, medicine, and civil engineering. CFD solvers are numerical tools
for simulating fluid flow characteristics to design, analyze, or optimize fluid flow behavior.
However, high temporal and spatial resolution is required to achieve high accuracy in
state-of-the-art CFD simulations. These solvers require expensive computational resources,
especially with iterative problems. To this end, data-driven machine learning models not
only estimate accurate approximation fluid flow fields, but also require fewer computational
resources [1]. To reduce computational costs, a trained neural network (NN) might take
the role of a portion of the numerical resolution process. As an illustration, several NN
applications have been produced to solve and predict flow in terms of the large eddy
simulation (LES) [2] and Reynolds-averaged Navier–Stokes (RANS) computations [3,4].

CFD simulations’ complexity might be reduced by using reduced order model (ROM)
techniques, such as simplified physics methods, reduced basis (RB), or proper orthogonal
decomposition (POD). In particular, deep learning (DL)-enabled ROM can be used to set
up a nonlinear relationship between various inputs and outputs of a target system. The DL-
enabled ROM, along with the training model, can generate a low-dimensional subspace that
records the average behavior of flows. Through this training process, complex features that
cannot be expressed explicitly in a functional form can be represented [5]. In practice, the
DL-enabled ROM accurately captures fluid flow’s temporal and spatial nonlinear features.

Sustainability 2022, 14, 11996. https://doi.org/10.3390/su141911996 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141911996
https://doi.org/10.3390/su141911996
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-8366-9396
https://orcid.org/0000-0002-9651-7439
https://orcid.org/0000-0001-8475-7294
https://doi.org/10.3390/su141911996
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141911996?type=check_update&version=2


Sustainability 2022, 14, 11996 2 of 16

For example, Wang et al. [6] presented a model recognition of reduced-order fluid dynamic
systems by DL. The authors proved that their framework could capture complex fluid
dynamics features with less computational cost. Furthermore, Fukami et al. [7] performed
a super-resolution analysis of evidently under-resolved turbulent flow data based on the
DL model and then reconstructed the high-resolution flow field. This successful model
built a nonlinear mapping between low and high resolutions of the turbulent flow fields.

The various proposed DL-ROM algorithms [8,9] were evaluated on both linear and
nonlinear time-dependent parameters to demonstrate the flexibility of this methodology
and its incredible computing savings. After executing a prior dimensional reduction by
POD, Fresca et al. [10] suggested that DL-based ROMs rely on DNNs, significantly reducing
their training times. The blood flow in a cerebral aneurysm, the fluid-structure interaction
between an elastic beam attached to a fixed, rigid block, and the flow around a cylindrical
benchmark are all accurately predicted by the resulting POD-DL-ROMs in almost real-time.
A novel DL framework called DL-ROM was also developed by Pant et al. [11] to build
a neural network that can make non-linear projections to lower-order states. They then
employ a 3D autoencoder and 3D U-Net-based architectures to effectively forecast future
time steps of the simulation using the learned reduced state. By traversing time in the
learned reduced state, their model DL-ROM can efficiently anticipate future time steps by
building highly accurate reconstructions from the learned ROM. Recently, Kang et al. [12]
presented POD-ROM, which quickly and precisely describes the flow status of the fluid
field in rod bundles.

DL-based CFD models have recently attracted the attention of fluid flow and ther-
mal engineering research as a reduced-order modeling method. To learn the solutions of
parametric partial differential equations (PDEs) over irregular domains, including Navier–
Stokes and heat transfer equations, Gao et al. [13] presented a physics-constrained convolu-
tional neural network (CNN) architecture. Their findings showed how well the DL tech-
nique predicted temperature and velocity fields. The DL-based CFD model was employed
by San et al. [14] to precisely resolve the spatial–temporal nonlinear characteristic in a fluid
dynamic system. In addition, a data-driven DL model was also used by Sekar et al. [15] to
measure laminar flow on an airfoil dataset. The experimental findings demonstrated that
the model accurately predicted laminar flow fields using the airfoil geometry, Reynolds
number, and attack angles as learning parameters. Jin et al. [16] subsequently suggested a
CFD approach based on DL that directly maps the relationship between the pressure and
velocity distribution on the surface of a cylinder to determine the fluctuating velocity field
around it. The aforementioned studies proved and validated the capacity of DL-based CFD
to offer substitute numerical solutions to physical issues.

Guo et al. [17] and Ribeiro et al. [18] are representative pioneers of DL-based CFD
model approaches. The authors used CNN and U-Net models to evaluate the proposed
methods to predict steady flow around obstacles and different loss types. In this study, we
present a novel approach to effectively enhance the CFD fluid flow field prediction results,
using the basic concept of a DL-enabled ROM in these pioneering studies. Similar to other
data-driven DL-based CFD methods, we performed design and CFD simulations using an
appropriate CFD solution in advance in the offline phase. Subsequently, we obtained a raw
CFD dataset and preprocessed the data to feed into the DL model. Then, the trained CFD
model was used to test and evaluate the unseen CFD data case. The proposed CFD learning
model results are significantly faster than a CFD simulation. The three main contributions
of this paper are summarized as follows.

• Firstly, we create the raw laminar flow datasets around different obstacles using
the CFD solver FEATool [19]. Then, we generate novel learning input and output
interpolated CFD features using the mesh-grid and grid-data computations on these
raw simulated datasets.

• Second, we build a deep U-Net model comprising an encoder and three decoders to
predict three output classes corresponding to three different flow fields, respectively.



Sustainability 2022, 14, 11996 3 of 16

This deep U-Net model estimates fluid flow fields by learning from preprocessed data,
that is, interpolated features data.

• Lastly, we evaluate the proposed method by measuring the learning and testing loss
metrics. The experimental results show the competition and promise of the proposed
method with other baseline models on the same dataset.

The remainder of this paper is organized as follows. The related works are described in
Section 2. Section 3 presents the proposed method, including the novel learning feature data
generation, DL model approach, model evaluation, and optimization. Section 4 presents
the experimental results, discusses the hyper-parameters’ effectiveness, and presents a
comparison with other related baseline models. Finally, Section 5 concludes the paper and
discusses the scope for future work.

2. Related Work

Recent advances in ML have impacted CFD research owing to its significant advan-
tages. ML models estimate approximate thermal or fluid flow fields with low cost and
accuracy compared with conventional CFD simulations. Sarghini et al. [20] developed
ML model to estimate steady-state velocity flows. Next, Lee et al. [21] built an NN to
predict unsteady flow around a cylinder. The authors minimized the physical loss function
comprising conservation laws and regression errors. Kashefi et al. [22] created an artificial
neural network with modest geometry alterations to achieve various velocity and pres-
sure fields. Furthermore, additional recent publications have demonstrated a variety of
effective uses for CFD-based DL models, including physics-informed NN [3], airfoil design
optimization [23], and acceleration of sparse linear system solutions [24,25].

The modern DL technique has recently played a vital role in CFD simulations. Deep
neural network models have been used as data-driven surrogate models that efficiently
approximate the velocity and pressure fields. Regarding the DL-based CFD approach, the
direct estimation of fluid flow fields comprises two representative models: CNN-based
CFD and variant autoencoder (AE)-based CFD.

In terms of a CNN-based CFD prediction approach, Guo et al. [17] proposed a CNN
model for predicting stationary flow fields around solid objects. Moreover, previous
studies [26,27] have used CNN models to learn arbitrary geometry representations. Geor-
giou et al. [28] developed a CNN application for reconstructing fluid force and flow predic-
tion. Jin et al. [16] proposed a fusion CNN model to predict velocity snapshots around a
cylinder. Furthermore, Zhang et al. [29] predicted the lift and drag coefficients of 2D airfoils
using a CNN model. In addition, the CNN model was applied to measure flow in arbitrary
shapes by Viquerat et al. [30].

In terms of AE and its variant U-Net model-based CFD prediction approach, AE
models were used for supervised learning to predict various full-field flows in [16,17,21].
Especially among the various AE architectures, the U-Net model was recently applied suc-
cessfully to estimate CFD flows. According to Ronneberger et al. [31], U-Net models might
achieve the best segmentation accuracy by fusing high-level latent-space representation
with low-level characteristics. Thuerey et al. [32] applied the U-Net model to estimate
turbulent flow around airfoils, including the velocity and pressure flows, which were
computed using RANS. Fukami at el. [7] applied the U-Net model to reconstruct turbulence
with remarkable accuracy from rough flow field images. A recurrent U-Net architecture
was investigated and developed by Kamrava et al. [33] to predict stationary velocity and
pressure fields in porous membranes. Wang at el. [34] proposed a gated U-Net-based pixel
CNN++ architecture to simulate fluids in porous media. Ribeiro et al. [18] applied the
high-performance accuracy of the U-Net model to steady-state laminar flow approximation
around simple obstacles. Chen et al. [35] proposed a twin-decoder based on the U-Net
model to reconstruct incompressible laminar flow on 2D obstacle data.

In addition, the flow field feature information is crucial for enhancing the performance
accuracy of flow estimation models. For example, Ribeiro et al. [18] and Alvaro et al. [33]
reported remarkable prediction results through deep CFD models to predict the velocities



Sustainability 2022, 14, 11996 4 of 16

and pressure by generating features based on the signed distance function (SDF) and flow
region channel. Peng et al. [36] generated network input learning using the SDF and
temperature field from numerical simulation data as output learning to feed the CNN
model. SDF and binary features were developed for CFD input learning of CNN and U-Net
models in [37]. Li et al. [38] proposed a wall distance field and space coordinate field for
the U-Net model’s input features. In this study, we used a different approach to generate
novel input features for our proposed model. Three-channel input features were extracted,
including interpolated grid X and Y coordinates and obstacle binary map values. The
proposed method for data generation is presented in detail in Section 3.

3. The Proposed Method

In this section, we describe the proposed method. The proposed method was trained
on a dataset comprising CFD-computed laminar flows around cylindrical, triangular, rect-
angular, and polygonal obstacles with random 2D shapes. Figure 1 shows the proposed
network architecture. This architecture’s three main parts are data generation, prepro-
cessing deep U-Net-based CFD flow prediction, and model evaluation. The following
subsections present the detailed components of the architecture.

Figure 1. The proposed network architecture.

3.1. Data Generation and Preprocessing

This section represents CFD data generation and preprocessing, which are used for
deep learning networks, as shown in Figure 2. Personal data generation processing includes
three steps as follows. The first step was generating arbitrary obstacles using MATLAB’s
FEATool solver. The next step is to solve the Naiver–Stokes equations using the immersed
method. The final step is to obtain CFD fluid fields comprising coordinates (x, y), velocities
(u, v), and pressure (p). Triangular meshes were used to project the velocities and pressure
fields for preprocessing and training on deep learning networks.

3.1.1. Random Shape Generation and Numerical Resolution of the Naiver–Stokes Equation

Numerical simulations were conducted to obtain the raw CFD dataset for our experi-
ments.

The FEATool commercial code was used for the numerical simulations. The m-script
programming language, used in the FEATool Multiphysics simulation toolbox, needs either
MATLAB or the MATLAB Compiler Runtime (MCR) to run and interpret the source code.

https://www.featool.com/multiphysics


Sustainability 2022, 14, 11996 5 of 16

Figure 2. Data collection from CFD solver.

A rectangular two-dimensional computational domain with a circular cylinder was
considered in the numerical domain. In addition, other obstacles, such as triangles, rectan-
gles, and polygons, were simulated in the same domain dimension as the cylinder obstacle.
Figure 3 shows the benchmark problem for stationary flow and incompressible laminar
flow around a cylinder, which was set up in rectangular 2D following [25,39].

Figure 3. Example of flow around cylinder simulation.

The rectangular 2D domain dimensions were designed as follows; the width stream
direction is 220 mm and the height direction perpendicular to flow is 41 mm. Grid com-
putation and boundary setting are two essential components of CFD modeling. In our
simulation, we used the triangle cell type for the grid type, with subdomain grid size
0.002 and growth rate 0.3. Therefore, the average cell count was approximately 35,000.
For boundary setting, the left side of the 2D domain is the inlet and the right side is the
outlet. No-slip conditions were assigned to the top and bottom sides as obstacle walls.
In particular, inlet with velocity input (u = u0) had boundary coefficients (u0 = 0.2 and
v0 = 0). Outflow with pressure output (p = p0) had boundary coefficient (p0 = 0). Walls
with no-slip (u=0) had no boundary coefficient. Furthermore, the boundary conditions
were fixed with a constant density (ρ) set to the unity with a value of 1, viscosity (µ) of 0.001,
and F as the forcing term with 0 as the default value. A maximum velocity umax = 0.3 and
a mean velocity umean = 2

3 umax = 0.2 were used, with a laminar flow Reynolds number
Re = ρdumean

µ = 20.
The equations for the mass and momentum of the incompressible 2D Navier–Stokes

equations are given as follows:
∂p
∂t

+∇ · (ρu) = 0 (1)

∂

∂t
(ρu) +∇ · (ρuvT) = −∇p +∇ · τ + f (2)

where the velocity field is denoted by u, density is denoted by ρ, the pressure field is
denoted by p, the stress tensor is denoted by τ, v = µ

ρ0 is the kinematic viscosity, and body
forces (ex. gravity) are denoted by f .



Sustainability 2022, 14, 11996 6 of 16

3.1.2. Learning Features Generation

The FEATool solver was used to generate a 2D laminar flow dataset around random
obstacles with over 1000 samples. In FEATool, we used a shell script to write an auto-
matic dataset with arbitrary geometry. The velocity and pressure fields were saved to the
corresponding cell information for each computational grid. The following uses the CFD
raw data to convert it into NumPy arrays as input and output features. The proposed
interpolated grid algorithm converts the data so that it is easy to feed into deep networks
for predicting fluid flows.

The raw data of velocities and pressure fields obtained by CFD solvers were projected
onto these meshes by linear interpolation. Before providing the input fields to the learning
network, the input features are reshaped to 2D 200× 200 arrays. After finishing the simula-
tions, the raw CFD fluid flow field dataset with preprocessing was implemented following
proposed Algorithm A1. Figure 4 presents the feature generated input (XX, YY, OBM) and
interpolated learning output data (Ux, Uy, P) were generated using Algorithm A1.

Figure 4. Examples of learning data features generation. The first row is the input feature generated
(XX, YY, and OBM). The second row is the output feature generated (Ux, Uy, P).

The input and output learning features are generated using mesh-grid and grid-data
computations under an interpolation process. First, a mesh grid is helpful to construct a
well-defined 2D or even multi-dimensional space, which needs the ability to refer to each
position in the space. In the first two channel inputs, we created a m× n Cartesian grid,
with the x coordinate ranging from 1 to m and the y coordinate ranging from 1 to n. This
means the ordered pairs of (x, y) coordinates will begin from (1, m) and go on until (1, n).
We depict two examples of 2D mesh-grid Numpy arrays below, XX and YY, with m×m
and n× n shapes, respectively.

XXm×m =


1 2 3 · · · m
1 2 3 · · · m
1 2 3 · · · m
...

...
...

. . .
...

1 2 3 · · · m



YYn×n =


1 1 1 · · · n
2 2 2 · · · n
3 3 3 · · · n
...

...
...

. . .
...

n n n · · · n


Hence, we can generally construct and visualize the mesh-grid structure (MG) follow-

ing coordinate points of XX and YY as follows.



Sustainability 2022, 14, 11996 7 of 16

MGm×n =


11 21 31 · · · mn
12 22 32 · · · mn
13 23 33 · · · mn
...

...
...

. . .
...

1n 2n 3n · · · mn


Algorithm A1: Interpolated Input and Output Features Generation

input :x-coordinate x,
y-coordinate y,
horizontal velocity u,
vertical velocity v,
pressure p,
width m,
height n

output :2D array of horizontal mesh-grid XX,
2D array of vertical mesh-grid YY,
object binary map OBM,
interpolated horizontal velocity Ux,
interpolated vertical velocity Uy,
interpolated pressure P

1 // Create two 1D array following x, y coordinates
2 xg← array[(min(x), max(x), m]
3 yg← array[(min(y), min(y), n)]
4 // Generate 2D numpy arrays are horizontal and vertical of mesh-grids using xg

and yg
5 XX, YY ← mesh_grid(xg, yg)
6 // Generate obstacle binary mapping
7 delta_level ← 3
8 delta← arrange(delta_level)
9 x_Index ← x_Index + delta

10 y_Index ← y_Index + delta
11 x_Index[x_Index >= m]← m− 1
12 y_Index[y_Index >= n]← n− 1
13 binary_Map[x_Index, y_Index]← 1
14 OBM← transpose(binary_Map)
15 // Generate output features
16 Ux ← grid_data((x, y), u, (XX, YY))
17 Uy← grid_data((x, y), v, (XX, YY))
18 P← grid_data((x, y), p, (XX, YY))
19 return (XX, YY, OBM, Ux, Uy, P)

Second, grid data is used to interpolate a spatial set of data with z values. In this work,
we interpolated three output features from raw data (z = {u, v, p}) in Equation (3).

Z = MG((x, y), z) (3)

In summary, the proposed Algorithm A1 comprises three main steps. The first step
creates a mesh grid following the x, y coordinates obtained (pseudo-code presented in
lines 2 to 3). The result of this step was used to interpolate the mesh grid in the next
step. The second step generates two first channel inputs, XX and YY, by interpolating the
horizontal and vertical following the results of the first step (pseudo-code presented in
line 5). The next step is to generate a third channel of the input, obstacle binary mapping



Sustainability 2022, 14, 11996 8 of 16

(OBM) (pseudo-code presented in lines 7 to 14). The final step is to generate output features,
including Ux, Uy, and P (pseudo-code presented in lines 16 to 18).

3.2. The Proposed CFD Based Deep U-Net Model

In this work, we developed our CFD model based on the U-Net architecture, which
has been widely applied recently in computer vision tasks such as image translation, image
recognition, etc. [31]. The conventional U-Net model has a bowtie structure that involves
two network parts: an encoder and a decoder. The convolutional layers are used to translate
the spatial information into extracted features. The spatial information will translate into
the extracted features via the convolution layers. The U-Net model may include skipping
connections to concatenate low-level features from the constructive path to the expansion
path. In order to guarantee that the output layers are accessible for solution prediction,
the U-Net architecture does indeed have skip links from the encoder to decoder networks.
The architecture of the proposed U-Net is shown in Figure 1. Algorithm A2 presents the
proposed learning model. The algorithm comprises three main steps. The first step is to
create encoder and decoder networks during the training process (pseudo-code presented
in lines 3 to 9). The second step is to predict the flow fields (pseudo-code presented in
lines 10 to 12). The final step is to calculate the MSE losses of each relevant flow field
(pseudo-code presented in lines 13 to 15).

Moreover, an essential part of the proposed learning model is the encoder–decoder.
We reduced the data size by downsampling the stride convolution factor in the encoder
network. With the growing number of feature channels, the network is allowed to extract
increasing amounts of large-scale and abstract information. The encoding part takes
the interpolated features, including XX, YY, and OBM. The encoder feature vectors
eenc(XX, YY, OBM) can be formulated as:

eenc(XX, YY, OBM) = Conv2d(XX, YY, OBM) (4)

where Conv2d(.) denotes the 2D convolution layer and a fully connected layer at the end.
It is used to map the interpolated feature of the geometric vector representation.

With average pooling layers, the decoding network reduces the number of feature
layers while increasing the spatial resolution. We may double the number of channels in
each decoding block by employing skip connections to concatenate the channels from the
encode section to the corresponding decode part. The deep U-Net model might consider the
information of the low-level input channel via these skip connections while reconstructing
a solution in the decode network part. Each network part uses a convolutional layer (cv), a
batch normalization (bn) layer, and a non-linear activation function (act). Deconvolution
operations are used to decode and transform high-level features encoded by the encoder
network. The decoding process is given by the following formula:

dUx,Uy,P = Deconv2d(eenc(XX, YY, OBM)) (5)

where dUx,Uy,P denotes three output channel predictions of the horizontal velocity (Ux),
vertical velocity (Uy), and pressure (P). Deconv2d(.) denotes multiple deconvolution layers
using ReLU to map the extracted geometry representation vector to flow fields such as
velocity and pressure.

In addition, we implemented our model using Python. We trained our model using
an Adam optimizer and 1000 iterations of epochs because the training runs converged
with the predicted accuracy. The learning rate, kernel size, and filter are a few additional
significant hyperparameters of the adopted model discussed in the next section.

3.3. Model Evaluation and Optimization

One of the essential factors affecting the performance accuracy of the deep U-Net
network is the hyperparameters. Therefore, finding suitable hyperparameters for the model
can optimize the learning model and obtain good learning accuracy. Some hyperparameters



Sustainability 2022, 14, 11996 9 of 16

are the number of hidden layers, learning rates, batch size, weight decay, filter, and kernel
size. These values are described in detail in the following section. In addition, to evaluate
the performance of the proposed model, we calculated the MSEs for each relevant flow
field estimation as follows.

Algorithm A2: Deep U-Net-based CFD Prediction Model
input : XX, YY, OBM, Ux, Uy, P
output :Estimated horizontal velocity Pre_Ux,

Estimated vertical velocity Pre_Uy,
Estimated pressure Pre_P,
Learning loss of horizontal velocity mse_Ux,
Learning loss of vertical velocity mse_Uy,
Learning loss of pressure mse_P

1 in_DB← [XX, YY, OBM]
2 out_DB← [Ux, Uy, P]
3 // Create encoder and decoder networks while training process
4 while (e <= epoches) do
5 en← encoder(in_DB, f ilter, kernel, bn, act)
6 de← []
7 for i← (out_DB) do
8 de← append(de, decoder(i, f ilter, kernel, bn, act))
9 end

10 end
11 // Ux, Uy, P prediction
12 Pre_Ux ← de[Ux]
13 Pre_Uy← de[Uy]
14 Pre_P← de[P]
15 // MSE losses of Ux, Uy, P
16 mse_Ux ← ∑(Ux− Pre_Ux)2

17 mse_Uy← ∑(Uy− Pre_Uy)2

18 mse_P← ∑(P− Pre_P)2

19 return Pre_Ux, Pre_Uy, Pre_P, mse_Ux, mse_Uy, mse_P

The MSE of velocity Ux calculation is as follows:

mse_Ux =
m

∑
i=1

(Ux− Pre_Ux)2 (6)

where Ux is the actual horizontal velocity and Pre_Ux is the predicted horizontal velocity.
The MSE of velocity Uy calculation is as follows:

mse_Uy =
m

∑
i=1

(Uy− Pre_Uy)2 (7)

where Uy is the actual vertical velocity and Pre_Uy is the predicted vertical velocity.
The MSE of pressure P calculation is as follows:

mse_P =
m

∑
i=1

(P− Pre_P)2 (8)

where P denotes the actual pressure velocity and Pre_P is the predicted pressure velocity.
Hence, we calculate the total loss for the training and test processes as follows:

total_Loss = mse_Ux + mse_Uy + mse_P (9)



Sustainability 2022, 14, 11996 10 of 16

4. Experimental Results and Discussion
4.1. Effectiveness of Hyper-Parameters

As described previously, model hyperparameters are essential for supporting deep
networks to obtain convergence and enhance performance accuracy. In our experiment, we
performed trial and error for some stable values by changing our learning models’ learning
rate, batch size, and weight decay values. However, the model’s performance did not
improve significantly when changing and adjusting these hyperparameter values. Hence,
we determined the following suitable hyperparameters: a learning rate of 0.0001, a batch
size of 64, and a weight decay of 0.005. However, we found that kernel sizes and filter
hyperparameters influenced the proposed model, causing a significant reduction in the loss
of flow prediction. We combined each of these hyperparameter values to determine the
best combination. The effectiveness of both parameters is shown in Table 1. Table 1 shows
that the suitable values of the kernel size and filter are 11 and (8, 16, 64, 64), as shown in
the last bold row.

Table 1. Adjusting values of the important hyperparameters.

Kernel Size Filter Training
Loss

Testing
Loss Ux’s MSE Uy’s MSE P’s MSE

(4, 8, 16, 16) 8.043 8.585 4.740 3.465 0.379

5 (8, 16, 32, 32) 15.556 17.438 14.349 1.795 1.293

(16, 32, 64, 64) 3.473 3.069 2.066 0.602 0.400

(4, 8, 16, 16) 3.016 3.315 2.531 0.711 0.073

11 (8, 16, 32, 32) 3.016 3.315 2.531 0.711 0.073

(16, 32, 64, 64) 0.309 0.452 0.404 0.033 0.014

Furthermore, we visualized fluid flow prediction using our model. Figure 5 shows
the CFD flow around the cylinder prediction results of the proposed method with the best
parameters. In summary, the optimal hyperparameters were determined in this experiment.
We then used these values to perform other experiments.

4.2. Performance Evaluation and Comparison to Other Deep Learning Models

In order to assess our model, we evaluated and depicted the MSE losses of the model
during the training and testing processes, as shown in Figure 6. The loss graph demon-
strates that the suggested strategy can maximize convergence while minimizing loss.

In addition, we experimented using the best hyperparameters determined over the
flow predictions of other obstacles. The kernel value is 11 and the kernel size tuple is (16,
32, 64, 64), with the best performance obtained by the proposed method in the flow around
cylinder prediction. Hence, we used these values for this experiment on other obstacles at
different locations. Each obstacle estimation experiment is presented in Table 2.

To compare the proposed method with other baseline models, we experimented with
two models: AE and a single U-Net with one decoder over the same CFD dataset generated
with cylinder, triangle, rectangle, and pentagon obstacles. Table 3 presents the results of the
three approaches. The results show that our deep U-Net approach outperformed the other
models (shown in the last bold row).



Sustainability 2022, 14, 11996 11 of 16

(a)

(b)

(c)

Figure 5. CFD flow fields (velocities and pressure) prediction obtained. The first column is
ground truth, the second column is CFD flow fields prediction, and the third column is MSE loss.
(a) Ux velocity; (b) Uy velocity; (c) P pressure.

(a) MSE of Ux (b) MSE of Uy

(c) MSE of P (d) Total MSE

Figure 6. MSE loss graphs for training and testing processes.



Sustainability 2022, 14, 11996 12 of 16

Table 2. Performance of the proposed method with different obstacles.

Obstacle Train Loss Test Loss Ux’s MSE Uy’s MSE P’s MSE

Triangle 0.524 1.198 0.903 0.236 0.058

Rectangle 0.541 3.366 3.366 0.081 0.253

Pentagon 3.255 4.855 3.559 0.474 0.821

Table 3. Comparison of the performance results of the proposed method to other deep learning models.

Model Training
Loss Testing Loss Ux’s MSE Uy’s MSE P’s MSE

AE 11.183 11.183 12.688 1.125 1.408

Single U-Net 4.599 5.017 1.127 3.861 0.027

Proposed method 0.335 0.345 0.294 0.294 0.015

To illustrate the prediction performance of the proposed method, Figures 7–9 show
the prediction performance of the two related models and the proposed method. The
results show that the proposed method is more accurate than other models. While the AE
model obtained less accuracy on Ux prediction (see Figure 7b) and the single U-Net model
achieved the worst result for Uy (see Figure 8c), the proposed method achieved the best
accuracy for both Ux and Uy estimation (see Figures 7d and 8d), as well as P prediction
(see Figure 9d).

(a) Ux ground truth (b) Ux prediction of AE

(c) Ux prediction of single U-Net (d) Ux of proposed model

Figure 7. Comparison of velocity (Ux) estimation performance of the proposed method to other
related models.



Sustainability 2022, 14, 11996 13 of 16

(a) Uy ground truth (b) Uy prediction of AE

(c) Uy prediction of single U-Net (d) Uy of proposed model

Figure 8. Comparison of the proposed method’s velocity (Uy) estimation performance to other related
models.

(a) P ground truth (b) P prediction of AE

(c) P prediction of single U-Net (d) P of proposed model

Figure 9. Comparison of the proposed method’s pressure (P) estimation performance to other
related models.

5. Conclusions

This paper presents a data-driven model for predicting steady-state flows with arbi-
trary obstacles in two-dimensional geometry, including cylinders, triangles, rectangles, and
pentagons. In preprocessing the raw simulated CFD data, we generated novel interpolated
grid features for the model learning data. The deep U-Net model was used to estimate
2D incompressible laminar flow over the generated interpolated feature data. The sug-
gested model is more suited for coupling with numerical simulations, since the deep U-Net
model operates directly on body-fitted triangular meshes of laminar flows surrounding the
2D obstacle dataset. According to the estimated results from the technique, the velocity
and pressure fields of the issues with various obstacles measured by the proposed model



Sustainability 2022, 14, 11996 14 of 16

agreed well with the CFD solver FEATool. Despite the different locations and obstacles, the
network model can still provide a satisfactory reconstruction. The experimental findings
provided accurate estimates of the pressure and velocity fields surrounding a pentagon,
triangle, rectangle, and cylinder. In future work, we will consider and extend our work
in different criteria experiments such as variations, perturbation, and Reynolds number
value changes in simulation environments to evaluate our model performance and predict
turbulence flow. Furthermore, we adapt and broaden our methodology to 3D simulated
data in order to address pressure and temperature prediction challenges.

Author Contributions: Conceptualization, T.-T.-H.L.; methodology, T.-T.-H.L.; software, T.-T.-H.L.;
validation, H.K. (Howon Kim); formal analysis, T.-T.-H.L. and H.K. (Hyoeun Kang); investigation,
H.K. (Howon Kim); resources, T.-T.-H.L. and H.K. (Hyoeun Kang); data curation, T.-T.-H.L. and
H.K. (Hyoeun Kang); writing—original draft preparation, T.-T.-H.L. and H.K. (Hyoeun Kang);
writing—review and editing, T.-T.-H.L. and H.K. (Howon Kim); visualization, T.-T.-H.L. and H.K.
(Hyoeun Kang); supervision, H.K. (Howon Kim); project administration, H.K. (Howon Kim); funding
acquisition, H.K. (Howon Kim). All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by Energy Cloud R&D Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Science, ICT (NRF-2019M3F2A1073385), and
in part by Institute of Information & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.2021-0-00903, Development of Physical Chan-
nel Vulnerability-based Attacks and its Countermeasures for Reliable On-Device Deep Learning
Accelerator Design, 50%).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamic
DNNs Deep Neural Networks
CNNs Convolution Neural Networks
LES Large Eddy Simulation
RANDS Reynolds Averaged Navier–Stokes
ROM Reduced Order Model
POP Proper Orthogonal Decomposition
DL Deep Learning
PDEs Partial Different Equations
AE Autoencoder
SDF Signed Distance Function
MCR MATLAB Compiler Runtime

References
1. Portwood, G.D.; Mitra, P.P.; Ribeiro, M.D.; Nguyen, T.M.; Nadiga, B.T.; Saenz, J.A.; Chertkov, M.; Garg, A.; Anandkumar, A.;

Dengel, A.; et al. Turbulence Forecasting via Neural Ode. 2019. Available online: https://arxiv.org/abs/1911.05180 (accessed on
22 February 2022).

2. Beck, A.D.; Flad, D.G.; Munz, C. Deep neural networks for data-driven turbulence models. CoRR 2018, abs/1806.04482. Available
online: http://arxiv.org/abs/1806.04482 (accessed on 25 February 2022).

3. Ling, J.; Kurzawski, A.; Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded
invariance. J. Fluid Mech. 2016, 807, 155–166. [CrossRef]

https://arxiv.org/abs/ 1911.05180
http://arxiv.org/abs/1806.04482
http://doi.org/10.1017/jfm.2016.615


Sustainability 2022, 14, 11996 15 of 16

4. Tracey, B.D.; Duraisamy, K.; Alonso, J.J. A machine learning strategy to assist turbulence model development. In Proceedings of
the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015.

5. Hagan, M.T.; Demuth, H.B.; Beale, M.H.; Jesús, O.D. Neural Network Design; PWS Publishing Co.: Cambridge, MA, USA, 2014.
6. Wang, Z.; Xiao, D.; Fang, F.; Govindan, R.; Pain, C.C.; Guo, Y. Model identification of reduced order fluid dynamics systems using

deep learning. Int. Numer. Methods Fluids 2017, 86, 255–268. [CrossRef]
7. Fukami, K.; Fukagata, K.; Taira, K. Superresolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 2019,

870, 106–120. [CrossRef]
8. Fresca, S.; Dedè, L.; Manzoni, A. A comprehensive deep learning-based approach to reduced order modeling of nonlinear

time-dependent parametrized PDEs. J. Sci. Comput. 2021, 87, 61. [CrossRef]
9. Fresca, S.; Manzoni, A. POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs

by proper orthogonal decomposition. Comput. Methods Appl. Mech. Eng. 2022, 388, 114181. [CrossRef]
10. Fresca, S.; Manzoni, A. Real-Time Simulation of Parameter-Dependent Fluid Flows through Deep Learning-Based Reduced Order

Models. Fluids 2021, 6, 259. [CrossRef]
11. Pant, P.; Doshi, R.; Bahl, P.; Barati, F.A. Deep learning for reduced order modelling and efficient temporal evolution of fluid

simulations. Phys. Fluids 2021, 33, 107101. [CrossRef]
12. Kang, H.; Tian, Z.; Chen, G.; Li, L.; Wang, T. Application of POD reduced-order algorithm on data-driven modeling of rod bundle.

Nucl. Eng. Technol. 2022, 54, 36–48. [CrossRef]
13. Gao, H.; Sun, L.; Wang, J.-X. Phygeonet: Physicsinformed geometry-adaptive convolutional neural networks for solving

parametric pdes on irregular domain. J. Comput. Phys. 2021, 428, 110079. [CrossRef]
14. San, O.; Maulik, R.; Ahmed, M. An artificial neural network framework for reduced order modeling of transient flows. Commun.

Nonlinear Sci. Numer. Simul. 2019, 77, 271–287. Available online: https://www.sciencedirect.com/science/article/pii/S100757041
9301364 (accessed on 18 March 2022). [CrossRef]

15. Sekar, V.; Khoo, B.C. Fast flow field prediction over airfoils using deep learning approach. Phys. Fluids 2019, 31, 057103 . [CrossRef]
16. Jin, X.; Cheng, P.; Chen, W.-L.; Li, H. Prediction model of velocity field around circular cylinder over various Reynolds numbers

by fusion convolutional neural networks based on pressure on the cylinder. Phys. Fluids 2018, 30, 047105. [CrossRef]
17. Guo, X.; Li, W.; Iorio, F. Convolutional Neural Networks for Steady Flow Approximation; ser. KDD ’16; Association for Computing

Machinery: New York, NY, USA, 2016; pp. 481–490. [CrossRef]
18. Ribeiro, M.D.; Rehman, A.; Ahmed, S.; Dengel, A. Deepcfd: Efficient Steady-State Laminar Flow Approximation with Deep

Convolutional Neural Networks. 2020. Available online: https://arxiv.org/abs/2004.08826 (accessed on 13 March 2022).
19. Featool Multiphysics. FEATool Multiphysics. 2013–2022. Available online: https://www.featool.com/doc/quickstart.html

(accessed on 12 January 2022).
20. Sarghini, F.; de Felice, G.; Santini, S. Neural networks based subgrid scale modeling in large eddy simulations. Comput. Fluids

2003, 32, 97–108. Available online: https://www.sciencedirect.com/science/article/pii/S0045793001000986 (accessed on 16
March 2022). [CrossRef]

21. Lee, S.; You, D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning. J. Fluid Mech. 2019, 879,
217–254. [CrossRef]

22. Kashefi, A.; Rempe, D.; Guibas, L.J. A point-cloud deep learning framework for prediction of fluid flow fields on irregular
geometries. Phys. Fluids 2021, 33, 027104. [CrossRef]

23. Lui, H.F.S.; Wolf, W.R. Construction of reducedorder models for fluid flows using deep feedforward neural networks. J. Fluid
Mech. 2019, 872, 963–994. [CrossRef]

24. Tompson, J.; Schlachter, K.; Sprechmann, P.; Perlin, K. Accelerating Eulerian Fluid Simulation with Convolutional Networks.
2016. Available online: https://arxiv.org/abs/1607.03597 (accessed on 28 March 2022).

25. Ribeiro, M.D.; Portwood, G.D.; Mitra, P.; Nyugen, T.M.; Nadiga, B.T.; Chertkov, M.; Anandkumar, A.; Schmidt, D.P.; Team, N.;
Team, U.; et al. A data-driven approach to modeling turbulent decay at non-asymptotic Reynolds numbers. In Proceedings of the
APS Division of Fluid Dynamics Meeting Abstracts 2019, Provided by the SAO/NASA Astrophysics Data System, Seattle, WA,
USA, 23–26 November 2019; p. G16.002.

26. Gupta, S.; Girshick, R.; Arbeláez, P.; Malik, J. Learning Rich Features from Rgb-D Images for Object Detection and Segmentation.
2014. Available online: https://arxiv.org/abs/1407.5736 (accessed on 27 March 2022).

27. Socher, R.; Huval, B.; Bhat, B.; Manning, C.D.; Ng, A.Y. Convolutional-recursive deep learning for 3d object classification. In
Proceedings of the 25th International Conference on Neural Information Processing Systems, Harrahs and Harveys, NV, USA,
3–8 December 2012; ser. NIPS’12; Curran Associates Inc.: Red Hook, NY, USA, 2012; Volume 1, pp. 656–664.

28. Georgiou, T.; Schmitt, S.; Olhofer, M.; Liu, Y.; Bäck, T.; Lew, M. Learning fluid flows. In Proceedings of the 2018 International Joint
Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

29. Zhang, Y.; Sung, W.-J.; Mavris, D. Application of Convolutional Neural Network to Predict Airfoil Lift coefficient. 2017. Available
online: https://arxiv.org/abs/1712.10082 (accessed on 16 March 2022).

30. Viquerat, J.; Hachem, E. A supervised neural 10 VOLUME, 2021Author Le et al.: Towards Incompressible Laminar Flow
Estimation Based on Interpolated Feature Generation and Deep Learning network for drag prediction of arbitrary 2d shapes in
laminar flows at low reynolds number. Comput. Fluids 2020, 210, 104645. Available online: https://www.sciencedirect.com/
science/article/pii/S0045793020302164 (accessed on 2 April 2022). [CrossRef]

http://dx.doi.org/10.1002/fld.4416
http://dx.doi.org/10.1017/jfm.2019.238
http://dx.doi.org/10.1007/s10915-021-01462-7
http://dx.doi.org/10.1016/j.cma.2021.114181
http://dx.doi.org/10.3390/fluids6070259
http://dx.doi.org/10.1063/5.0062546
http://dx.doi.org/10.1016/j.net.2021.07.010
http://dx.doi.org/10.1016/j.jcp.2020.110079
https://www.sciencedirect.com/science/article/pii/S1007570419301364
https://www.sciencedirect.com/science/article/pii/S1007570419301364
http://dx.doi.org/10.1016/j.cnsns.2019.04.025
http://dx.doi.org/10.1063/1.5094943
http://dx.doi.org/10.1063/1.5024595
http://dx.doi.org/10.1145/2939672.2939738
https://arxiv.org/abs/2004.08826
https://www.featool.com/doc/quickstart.html
https://www.sciencedirect.com/science/article/pii/S0045793001000986
http://dx.doi.org/10.1016/S0045-7930(01)00098-6
http://dx.doi.org/10.1017/jfm.2019.700
http://dx.doi.org/10.1063/5.0033376
http://dx.doi.org/10.1017/jfm.2019.358
https://arxiv.org/abs/1607.03597
https://arxiv.org/abs/1407.5736
https://arxiv.org/abs/1712.10082
https://www.sciencedirect.com/science/article/pii/S0045793020302164
https://www.sciencedirect.com/science/article/pii/S0045793020302164
http://dx.doi.org/10.1016/j.compfluid.2020.104645


Sustainability 2022, 14, 11996 16 of 16

31. Ronneberger, O.; Fischer, P.; Brox, T. Unet: Convolutional Networks for Biomedical Image Segmentation. 2015. Available online:
https://arxiv.org/abs/1505.04597 (accessed on 4 April 2022).

32. Thuerey, N.; Weißenow, K.; Prantl, L.; Hu, X. Deep learning methods for reynolds-averaged navier–stokes simulations of airfoil
flows. AIAA J. 2020, 58, 25–36. [CrossRef]

33. Kamrava, S.; Tahmasebi, P.; Sahimi, M. Physics and image-based prediction of fluid flow and transport in complex porous
membranes and materials by deep learning. J. Membr. Sci. 2021, 622, 119050. [CrossRef]

34. Wang, Y.D.; Chung, T.; Armstrong, R.T.; Mostaghimi, P. Ml-lbm: Machine Learning Aided Flow Simulation in Porous Media.
2020. Available online: https://arxiv.org/abs/2004.11675 (accessed on 5 March 2022).

35. Chen, J.; Viquerat, J.; Heymes, F.; Hachem, E. A Twin-Decoder Structure for Incompressible Laminar Flow Reconstruction with
Uncertainty Estimation around 2D Obstacles. 2021. Available online: https://arxiv.org/abs/2104.03619 (accessed on 7 April
2022).

36. Peng, J.-Z.; Liu, X.; Aubry, N.; Chen, Z.; Wu, W.-T. Data-driven modeling of geometryadaptive steady heat conduction based on
convolutional neural networks. Case Stud. Thermal Eng. 2021, 28, 101651. Available online: https://www.sciencedirect.com/
science/article/pii/S2214157X21008145 (accessed on 10 April 2022). [CrossRef]

37. Eichinger, M.; Heinlein, A.; Klawonn, A. Stationary flow predictions using convolutional neural networks. In ENUMATH, Lecture
Notes in Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2019; Volume 139.

38. Li, K.; Li, H.; Li, S.; Chen, Z. Fully convolutional neural network prediction method for aerostatic performance of bluff bodies
based on consistent shape description. Appl. Sci. 2022, 12, 3147. [CrossRef]

39. Nabh, G. On High Order Methods for the Stationary Incompressible Navier-Stokes Equations, ser. Interdisziplinäres Zentrum für
Wissenschaftliches Rechnen der Universität Heidelberg. IWR. 1998. Available online: https://books.google.co.kr/books?id=cx4
-HAAACAAJ (accessed on 15 April 2022).

https://arxiv.org/abs/1505.04597
http://dx.doi.org/10.2514/1.J058291
http://dx.doi.org/10.1016/j.memsci.2021.119050
https://arxiv.org/abs/2004.11675
https://arxiv.org/abs/2104.03619
https://www.sciencedirect.com/science/article/pii/S2214157X21008145
https://www.sciencedirect.com/science/article/pii/S2214157X21008145
http://dx.doi.org/10.1016/j.csite.2021.101651
http://dx.doi.org/10.3390/app12063147
https://books.google.co.kr/books?id=cx4-HAAACAAJ
https://books.google.co.kr/books?id=cx4-HAAACAAJ

	Introduction
	Related Work
	The Proposed Method
	Data Generation and Preprocessing
	Random Shape Generation and Numerical Resolution of the Naiver–Stokes Equation
	Learning Features Generation

	The Proposed CFD Based Deep U-Net Model
	Model Evaluation and Optimization

	Experimental Results and Discussion
	Effectiveness of Hyper-Parameters
	Performance Evaluation and Comparison to Other Deep Learning Models

	Conclusions
	References

