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Abstract
In this paper, we introduce an innovative approach to generate a high-quality mesh with a density function in a given domain. 
Our method involves solving a variational problem that optimizes the energy function of the optimal Delaunay triangula-
tion (ODT). To achieve this, we have developed a modified whale optimization algorithm (MWOA) based population that 
is combined with the quasi-Newton method (L-BFGS) to optimize ODT energy on a global level. Our experiments have 
demonstrated the impressive efficiency of this optimization algorithm in searching for better minima and producing high-
quality meshes. Remarkably, the algorithm’s powerful global optimization capability makes it insensitive to initialization, 
which eliminates the need for any special initialization procedures. Furthermore, our proposed algorithm can easily handle 
complex domains and non-uniform density functions, making it a versatile tool for mesh generation. Overall, our method 
offers a promising solution for generating practicable meshes with a density function.

Keywords Mesh generation · Optimal Delaunay triangulation · Modified whale optimization algorithm · Global 
optimization

1 Introduction

Simplicial meshes are commonly used in the applications 
of computer graphics, computer-aided engineering [1–3], as 
well as computational medicine and biology [4, 5]. Triangu-
lar/Tetrahedral meshes are more unstructured and could be 
adapted to arbitrary geometries with high accuracy. How-
ever, unstructured meshing is not a trivial problem. There 
have been many surveys, papers and books talked about 
this topic [6, 7]. The well-known methods of unstructured 

mesh generation can be divided into four categories [8, 9]: 
advancing front method, quad/octree-based method, Delau-
nay method and variational approaches. Advancing front 
method [10, 11] and quad/octree-based method [12, 13] 
can generate meshes quickly, but meshes produced by these 
approaches are either of poor quality in the interior or on the 
boundary [9]. Delaunay method [14, 15] generally divides 
into two parts according to how they deal with the boundary 
constraints. Conforming Delaunay method splits the bound-
ary to meet Delaunay conditions while constrained Delaunay 
method relaxes Delaunay conditions to hold the boundary 
constraints. However, conforming method may result in over 
refinement and constrained method may get poor-quality 
elements around the boundary. Nevertheless, mesh quality, 
including factors such as minimal/maximal dihedral angle, 
average radius ratio, etc. [16, 17] plays a significant role in 
influencing the accuracy and stability of numerical simula-
tions, such as finite element analysis.

Variational approaches [18, 19] could obtain better 
quality meshes due to minimizing the quality-defined 
energy function. Most notably, the concept of ODT energy 
combines the vertex position and topology optimization 
in the function approximation [20]. However, the ODT 
energy is notoriously difficult to optimize as it has lots of 
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local minimizers. To date, few studies have focused on 
the global optimization of ODT energy. Previous studies 
encountered the problem of balancing optimization time 
and mesh quality, especially when the initialization is poor 
[21].

In this paper, we develop a global optimization algorithm 
for minimizing the ODT energy to obtain much improved 
local minimal sites faster than previous works, especially 
when the initialization is far away from the optimal solu-
tion. Due to the C0 continuity and nonconvexity of the ODT 
energy, it is difficult to get its global minimum by tradi-
tional minimization approaches like Newton method, and 
extremely easy to get stuck at a local minimum. Especially 
when the topology changes, ODT energy decreases greatly, 
which is similar to discontinuous function. The whale opti-
mization algorithm (WOA) [22] is appropriate for both con-
tinuous and discrete search space and has been successfully 
used in many fields, like image segmentation [23], which 
has great potential for global optimization of ODT energy. 
However, it is non-trivial to apply the WOA to global opti-
mization of ODT energy. The local optimization capability 
of WOA is inadequate for obtaining a high-quality mesh 
when optimizing ODT energy, in comparison to traditional 
gradient-based methods. Additionally, the problem’s dimen-
sion increases significantly with the number of vertices, 
leading to a vast search space that makes finding the optimal 
solution challenging. Moreover, the effectiveness of global 
optimization in WOA depends heavily on the appropriate 
setting of key parameters. However, when optimizing ODT 
energy, the default parameter settings of WOA fail to achieve 
the desired results.

To overcome the above problems, we carefully designed a 
global optimization algorithm, which significantly improved 
the computational efficiency and quality. Our major contri-
butions are:

• We propose a novel hybrid optimization algorithm that 
integrates L-BFGS with MWOA to achieve efficient and 
fast convergence to the global optimal solution. Our pro-
posed MWOA reduces the search space by using vertex 
neighborhood information and initializing the design 
population. Additionally, L-BFGS complements the local 
optimization capability.

• Based on a thorough analysis of the proposed algorithm, 
a set of parameters is specifically tailored for ODT energy 
optimization. Furthermore, the utilization of OpenMP for 
parallel acceleration significantly boosts the efficiency of 
the optimization process, leading to improved results.

• Extensive experiments have demonstrated that our pro-
posed hybrid optimization algorithm exhibits superior 
global optimization capability compared to existing 
global algorithms for ODT energy optimization. This 
suggests that our algorithm is well-suited for meshing 

with density function and does not require any special 
initialization.

The structure of the remainder of this paper is organized as 
follows. In Sect. 2, a brief review of ODT, CVT [24], and the 
global optimization of both is provided. Section 3 focuses 
on the preliminaries of optimal Delaunay triangulation and 
the whale optimization algorithm. The problem statement 
and an overview of our proposed optimization algorithm are 
presented in Sect. 4. Section 5 provides a detailed descrip-
tion of our optimization algorithm, including the initiali-
zation, local search, global search, and speedup strategies. 
The experimental results and conclusions are discussed in 
Sects. 6 and 7, respectively.

2  Related work

In this section, our focus is on the relevant literature related 
to variational approaches for mesh generation and their 
global optimization. For comprehensive surveys of unstruc-
tured meshing, readers are referred to [6] and [7]. Of particu-
lar significance in variational methods for mesh generation 
are the optimal Delaunay triangulation (ODT) and its dual 
centroidal Voronoi tessellations (CVT) [24]. Efficient and 
effective global optimization of ODT and CVT is essen-
tial. Therefore, we divide this review into three parts: ODT, 
CVT, and the global optimization of ODT and CVT, to pro-
vide a concise overview of the relevant references.

Optimal Delaunay Triangulation ODT, or Optimal 
Delaunay Triangulation, is a method proposed by Chen 
and Xu [20, 25] for generating high-quality meshes. It was 
then implemented in 3D and extended to graded meshes 
with sizing field and boundary handling [26]. Tournois 
et al. [27] introduced a composite approach that combines 
Delaunay refinement and ODT optimization to further 
improve mesh quality. They also proposed a boundary 
treatment called natural ODT, which perturbs slivers to 
improve mesh quality. Another approach to handle bound-
ary vertices is the boundary-optimized Delaunay triangu-
lation proposed by Gao et al. [28], where boundary verti-
ces are allowed to slide along the boundary. In contrast to 
the one-vertex update used in previous methods [25–27], 
variants of Newton’s method [21, 29] are used to obtain 
all the updated vertices of the mesh with fast convergence. 
Additionally, Chen et al. [30] combined edge flip with 
ODT to further improve the results. Connectivity regulari-
zation is introduced in the enhanced ODT method by Hai 
et al. [31] to escape from poor local minima. Chen et al. 
[21] observed that ODT generates fewer slivers compared 
to CVT, providing insights into the advantages of ODT 
in terms of mesh quality. To generate anisotropic meshes, 
Chen et al. extended uniform ODT by using interpolation 
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error to convex function f instead of ||x||2 [32]. However, 
this approach was found to be too restrictive, and Chen 
et al. [29] presented a density function-based method for 
generating anisotropic meshes that is not limited to convex 
functions. Furthermore, Feng et al. [33] extended ODT to 
curved ODT, which allows for the generation of curved 
unstructured meshes.

Centroidal Voronoi Tessellations Since the introduction 
of CVT by Du et al. [24], this concept has found successful 
applications in various areas, including high-quality mesh-
ing [8, 34], point cloud resampling [35], and supervoxel 
generation [36]. Liu et al. [37] demonstrated the almost 
C2 continuity property of the CVT energy function, while 
Lu et al. [38] proved its nonconvexity. Commonly used 
approaches to obtain CVT include Lloyd’s algorithm [24, 
39] and quasi-Newton methods [37]. To extend Euclidean 
CVT to manifold counterparts, several variations have 
been proposed, such as geodesic CVT [40, 41], intrinsic 
CVT [42], and restricted Voronoi diagrams (RVD) [43, 
44]. Yan et al. [34] introduced a rapid computation method 
for clipped Voronoi diagram, enhancing the computational 
efficiency of CVT within 3D compact domains. Moreover, 
CVT has also been extended to high-dimensional spaces 
[45]. Additionally, anisotropic meshes can be generated 
using CVT with different distance measures [46–49]. 
Power diagrams have also shown potential for generating 
anisotropic meshes as an extension of CVT [50]. However, 
it should be noted that when generating isotropic meshes 
in 3D, CVT may produce more slivers compared to the 
ODT method. This is because CVT is based on Voronoi 
diagrams instead of being directly defined on tetrahedral 
meshes, which inherently limits its ability to effectively 
suppress slivers compared to the ODT method [21, 26].

Global optimization of ODT and CVT Lu et al. [38] 
proposed a global optimization method for computing 
Euclidean CVT using a Monte Carlo with minimization 
(MCM) framework, while Liu et al. [40] introduced the 
manifold differential evolution (MDE) method for obtain-
ing geodesic CVT, which is insensitive to initialization 
and mesh tessellation. However, optimizing CVT can 
sometimes result in the generation of more slivers in the 
mesh. In contrast, ODT has been observed to have sliver-
suppressing properties in 3D, and hence optimizing ODT 
is chosen as the mesh generation method in this paper. 
Although there is relatively less research on the global 
optimization of ODT due to the difficulty of optimizing 
ODT energy, Chen et  al. [21] proposed a global ODT 
method that uses a combination of simulated annealing 
(SA) and a local solver (L-BFGS). However, this approach 
can often get stuck in local minima due to the sensitivity of 
the algorithm to initialization. In this paper, we propose a 
hybrid algorithm based on WOA for global optimization of 

ODT energy to obtain a better minimum. WOA is chosen 
because it can be used for both continuous and discrete 
space optimization, making it suitable for optimizing the 
ODT energy, which may have poor continuity. The cus-
tomized hybrid algorithm aims to overcome the challenges 
of local minima and sensitivity to initialization in previ-
ous methods, and achieve improved results in generating 
high-quality meshes.

3  Preliminary

In this section, we provide a brief overview of the optimal 
Delaunay triangulation (ODT) and the whale optimization 
algorithm (WOA), which are the key concepts utilized in 
this paper.

3.1  Optimal Delaunay triangulation

In the following, we will introduce ODT via its definition, 
properties and the computation of energy and gradient.

3.1.1  Definition

Given a compact domain Ω , a finite point set X ⊂ Ω and 
a density function �(x) defined on Ω , the ODT energy is 
defined as [29]:

where T  is the triangulation of X , f (x) = ‖x‖2, x ∈ Ω is the 
paraboloid function on domain Ω and fPWL(x) is the piece-
wise linear function interpolating f (x) at X ; see Fig. 1. The 
ODT energy function measures the deviation between the 

(1)E
�

ODT
(X, T) = ∫

Ω

�(x)|(fPWL − f )(x)|dx.

Fig. 1  Function approximation perspective of the ODT energy func-
tion. From bottom to top: a 2D triangular mesh (X, T) on the square-
shaped domain Ω with vertices (or sites) X = {xi}

n
i=0

 (marked in 
blue), the paraboloid function f (x) and its piecewise linear interpola-
tion fPWL



2598 Engineering with Computers (2024) 40:2595–2616

paraboloid function f (x) = ‖x‖2 and its piecewise linear 
interpolation function fPWL(x) over the triangular mesh T  . 
An ODT is then defined as the triangulation that minimizes 
the ODT energy.

The ODT energy function is widely used for mesh opti-
mization due to its ability to achieve equidistribution of 
weighted volumes and edge lengths among all simplices 
in the triangulation [29]. However, the ODT energy func-
tion poses a significant challenge for current optimization 
algorithms due to its combination of continuous and com-
binatorial optimization. The energy function involves opti-
mizing the positions of vertices in a continuous space while 
simultaneously considering the combinatorial aspects of 
mesh connectivity. The integration of continuous and com-
binatorial optimization in the ODT energy function presents 
a substantial challenge for current optimization algorithms 
to achieve effective minimization and attain optimal mesh 
configurations.

3.1.2  Properties

Chen et al. conducted a systematic study on the properties of 
the ODT energy [21], which revealed that the ODT energy 
function possesses three key properties, namely Delaunay 
consistency, piecewise C∞ continuity, and non-convexity.

• Delaunay consistent It means E�

ODT
(X, T) achieve the 

minimum when T  is Delaunay triangulation for a set of 
fixed vertices X , i.e., 

 where DT(X) is the Delaunay triangulation of the vertex 
set X . Therefore, the optimization of the ODT energy 
function can be achieved by iteratively optimizing the 
vertex set and computing the Delaunay triangulation 
in an alternating fashion [26]. In other words, the opti-
mization problem for the ODT energy function can be 

(2)DT(X) = argmin
T

E
�

ODT
(X, T),

transformed from minimizing E�

ODT
(X, T) to minimizing 

E
�

ODT
(X, DT(X)).

• Piecewise C∞  continuity Suppose the density function 
�(x) is smooth in Ω , meaning that it exhibits C∞ continu-
ity throughout the domain. The ODT energy function 
E
�

ODT
(X, DT(X)) is C0 continuous everywhere, but it is 

only piecewise C∞ continuous. The C∞ continuity of the 
function can be lost when the discrete connectivity is 
modified, as noted by Chen et al. [21]. This property 
make the ODT energy function prone to getting stuck in 
local minima when using common optimization algo-
rithms such as Newton’s method.

• Non-convex Extensive observations have confirmed the 
highly non-convex nature of the ODT energy function, 
characterized by the presence of numerous local minima. 
To provide numerical evidence supporting this claim, we 
conducted experiments in a 2D uniform scenario. Spe-
cifically, we distributed a total of N = 100 points in a 
regular pattern within the square domain [−5, 5]2 . Fig-
ure 2 illustrates the experimental setup, where only one 
point is permitted to move within the designated dusty 
blue region while the remaining points are held fixed. 
The visualization of the landscape of E�

ODT
(X, DT(X)) 

clearly exhibits the existence of numerous shallow local 
minima, which pose significant challenges in achieving 
global optimization.

3.1.3  Computational aspects

In optimization problems, the computation of energy and 
gradient is crucial. In the context of the ODT energy func-
tion, the density function is amenable to arbitrary functional 
forms. Within the confines of our best knowledge, numeri-
cal methods capable of exact integration for arbitrary func-
tions remain elusive. When the density function assumes 
specific, readily integrable values, such as constants, the 
computation of the ODT energy and its gradient attains a 
state of exact calculability. For others, the precise computa-
tion of the ODT energy function and its gradient is deemed 

Fig. 2  Visualization of the 
energy landscape with one point 
moving within the highlighted 
region. a All points are fixed, 
except for the one marked by 
the purple dot, which can freely 
move within the designated 
dusty blue region. b The 
landscape of the ODT energy 
function E�

ODT
(X, DT(X)) as it 

varies with the position of the 
moving point
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unfeasible. Instead, these quantities can be approximated 
using advanced numerical integration methods [51] with 
sufficient accuracy. Another approach is to estimate them 
by employing piecewise constant [29] or piecewise linear 
interpolation [21] of the density function, which is a rea-
sonable strategy for smoothly varying density functions. In 
our framework, we utilize the efficient method proposed by 
Chen et al. [21] for computing the ODT energy and gradient.

3.2  Symbolic interpretation

For the sake of simplicity and clarity, we first explain some 
symbols used in this context. The symbol ⋅ denotes element-
wise multiplication between two matrices, and | ⋅ | represents 
the absolute value of each element in the matrix:

⌊v⌉ is a copying operator that takes a vector v ∈ ℝ
n and cre-

ates a matrix with two columns that are identical to v ∈ ℝ
n:

�(M) is an operator that normalize each row vector 
mi = (m1

i
,m2

i
) of M ∈ ℝ

n×2 as follows:

3.3  Whale optimization algorithm

The Whale Optimization Algorithm (WOA) is a stochastic 
swarm-based optimization algorithm that mimics the hunt-
ing behavior of humpback whales [22]. The algorithm starts 
by randomly initializing the whale population, and then 
updates the population in each iteration using three foraging 
operations: (1) encircling prey operation moves the whale 
population towards the current best solution; (2) bubble net 
operation creates a region around the best solution where the 
whales move chaotically; (3) searching for prey operation 
moves each whale towards a randomly selected position. The 
algorithm terminates when reaches a maximum number of 
iterations or finds a satisfactory solution.

(3)�A ⋅ B� =
⎡⎢⎢⎣

�a11b11� … �a1mb1m�
⋮ ⋱ ⋮

�an1bn1� … �anmbnm�

⎤⎥⎥⎦n×m
.

(4)⌊v⌉ =
⎡
⎢⎢⎣

v1 v1
⋮ ⋮

vn vn

⎤
⎥⎥⎦n×2

.

(5)�(M) =

⎡
⎢⎢⎢⎣

m1

‖m1‖
⋮
mn

‖mn‖

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

m1
1

‖m1‖
m2

1

‖m1‖
⋮ ⋮

m1
n

‖mn‖
m2

n

‖mn‖

⎤
⎥⎥⎥⎦
n×2

.

When optimizing ODT, the whale population P consists 
of a series of triangular meshes, each with an equal number 
of vertices. These triangular meshes are referred to as agents 
in the whale population. The number of vertices in each agent 
is denoted by n, the coordinate dimension of the vertices is 
denoted by d, and the maximum global iteration number 
is denoted by K. Let yk ∈ ℝ

nd denote the vector formed by 
all vertices of an agent in the kth population. Moreover, let 
yk
r
 and yk

b
 denote an agent randomly selected from and the 

best of thekth population, respectively. Define ak = ark as a 
vector related to the iteration number k and a random vector 
rk ∈ [−1, 1]nd , where a = 2(1 −

k

K
) . Random numbers p and 

l chosen from the intervals [0, 1] and [−1, 1] , respectively, and 
random vectors c ∈ [0, 2]nd . Then, the ith element of vertex 
vector yk+1 of an agent in the (k + 1)th population is generated 
from the agents in kth population as follows:

The three equations in Eq. (6) sequentially describe the three 
foraging operators mentioned earlier in the WOA, namely, 
encircling prey, bubble net, and searching for prey. The 
variables p and ak are used to control the choice of forag-
ing operations in the WOA. In the original WOA [22], the 
adjustable parameter s is set to 1. However, although the 
original WOA algorithm is flexible and able to avoid local 
optima, it may not be suitable for directly optimizing ODT 
meshes due to its weak local optimization and inability to 
handle large amounts of data. In Sect. 5.2, we will introduce 
modifications to the WOA algorithm to better adapt it to the 
specific requirements of ODT mesh optimization. By lever-
aging the unique properties of ODT, we aim to improve the 
performance of the algorithm.

4  Algorithm overview

The this section, we will revisit the problem of optimizing 
ODT energy and provide a brief overview of our algorithm’s 
pipeline.

4.1  Problem statement

Given a domain Ω , a density function �(x) defined over Ω , 
and a target number N of vertices, our objective is to gener-
ate a high-quality mesh M = (X, T) with exactly N vertices 
inside Ω that minimizes the ODT energy defined in Eq. (1). 
As ODT energy is Delaunay consistent, we can optimize the 

(6)

(yk+1)i =

⎧
⎪⎨⎪⎩

(yk
b
)i − (ak)i ⋅ �(c)i ⋅ (ykb)i − (yk)i� p < 0.5, �(ak)i� < 1

(yk
b
)i + esl cos(2𝜋l)�(yk

b
)i − (yk)i� p ≥ 0.5

(yk
r
)i − (ak)i ⋅ �(c)i ⋅ (ykr )i − (yk)i� p < 0.5, �(ak)i� ≥ 1.
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vertex positions and mesh topology iteratively. Therefore, we 
can formulate the problem as follows:

The piecewise C∞ continuity and non-convex nature of the 
problem make it challenging to obtain the global optimal 
solution using conventional optimization algorithms such 
as the quasi-Newton method, which may get stuck in local 
optima. Designing a global optimization algorithm that can 
efficiently address this problem, especially when the initial 
mesh quality is poor, is of great importance. To this end, 

(7)min
X

E
�

ODT
(X, DT(X)).

we propose a hybrid optimization algorithm to optimize the 
ODT energy function.

4.2  Overview of ODT optimization algorithm

Our algorithm takes as input the domain Ω , the desired 
number N of sites within the domain Ω , and the density 
function �(x) , where x ∈ Ω . The output is a high-quality 
mesh M = (X, T) with a vertex distribution that follows the 
density function. An overview of our algorithm pipeline is 
presented in Fig. 3.

The main idea is to initialize the population using ran-

domly generated mesh, then perform a global optimization 

(a) (b) (c) (d) (e)

Fig. 3  Algorithm pipeline. a Input domain boundary corner sites; 
b initial mesh generated by placing boundary sites according to the 
given density function and random sites in the interior; c initial pop-

ulation generated by perturbing the initial random mesh; d updated 
population by performing the hybrid optimization and e the best 
agent extract from the population as the output high-quality mesh

Fig. 4  Hybrid optimization. 
MWOA is used to update the 
population globally, while 
L-BFGS is used to update the 
population locally

Fig. 5  Mesh initialization. a 
Input boundary corner sites; 
b sample the boundary sites 
according to the density func-
tion; and c generate interior 
sites and build the Delaunay 
triangulation

(a) Input boundary (b) Sampling sites (c) Initial mesh
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using our hybrid algorithm, and finally extract the mesh 
with the best energy from the population. To explore the 
global minimum efficiently, we modify the WOA algo-
rithm, referred to as MWOA. During the hybrid optimiza-
tion process, we employ a combination of MWOA and 
L-BFGS algorithms to achieve both global and local opti-
mization. Specifically, we apply the MWOA strategy to 
optimize globally and the L-BFGS approach to obtain a 
local solution for each agent in the population for K itera-
tions, as shown in Fig. 4. When the position of vertices is 

changed during optimization, the Delaunay triangulation 
needs to be recomputed due to the formulation in Eq. (7). 
If the updated position of a vertex falls outside the desig-
nated region, the vertex will not be updated. It is evident 
that the hybrid optimization approach increases the com-
putational load due to the presence of a population. To 
mitigate this, we employ two speedup strategies, which 
are elaborated upon in Sect. 5.4. Algorithm 1 outlines the 
framework of our hybrid algorithm.

Algorithm 1 Framework of our hybrid optimization algorithm.

Input: The max iteration K; the density function ρ(x); the initial mesh R;
the population of initial mesh P0 = ∪{M0

i }
na
i=1 with na agents.

Output: The optimized mesh M∗.
1: Compute the uniformity U of initial mesh R.
2: for k=1:K do
3: // Line 4− 17 is the MWOA optimization.
4: Initialize parameter p, s, l, ã, c, ω of each agent.
5: Find best agent Mk

b with minimal Eρ
ODT .

6: for Mk
i in initial population Pk−1 do

7: if p < 0.5 then
8: if |ã| ≤ 1 then
9: Do encircling prey (Eq. (8)) and store the new agent.

10: else
11: Do searching for prey (Eq. (9)) and store the new agent.
12: end if
13: else
14: Do bubble-net attacking (Eq. (10)) and store the new agent.
15: end if
16: end for
17: Construct the k-th population Pk.
18: // Line 20− 23 is the L-BFGS optimization.
19: if (U < 1) || ((U > 1)&(k < m)&(k mod z == 0)) then
20: for each agent in population Pk do
21: Compute Eρ

ODT and ∇Eρ
ODT of Mk

i .
22: Do 20 iterations L-BFGS process with Eρ

ODT and ∇Eρ
ODT .

23: end for
24: end if
25: if all agents have equal Eρ

ODT then
26: Break the iteration.
27: end if
28: end for
29: Compute the best agent M∗ with minimal Eρ

ODT of PK .
30: Further optimize M∗ with 30 iterations of L-BFGS optimization.
31: return M∗.
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5  Algorithm

5.1  Initialization

To optimize the ODT energy using a population-based opti-
mization algorithm, we require an initial population gener-
ated by an initial mesh in our framework. Therefore, the 
initialization process is divided into two parts: mesh initiali-
zation and population initialization.

Mesh initialization We begin the initialization by plac-
ing sites on the boundary of the domain, as shown in Fig. 5. 
The placement of these boundary sites is determined by the 
input density function �(x) . Specifically, the method we use 
to place the sites depends on whether the density function is 
uniform or not as follows:

• Uniform density The ODT energy tends to distribute 
points uniformly and results in equilateral triangles in 
the mesh. This usually leads to a point-to-triangle ratio of 
approximately 1:2 in an ODT. The length of the triangles 
(denoted by � ) can be estimated by considering the total 
area of the domain Ω , as well as the number of faces. 
Therefore, we sample the boundary evenly, ensuring 
that the distance between two adjacent sampled points is 
approximately equal to the length of the triangle edges.

• Non-uniform density As opposed to the density function, 
the sizing field refers to a function that determines the 
ideal edge length within the domain [26]. The sizing field 
h(x) over the domain Ω for sampling the boundary sites 
can be chosen as h(x) = � ∗ �(x)

−
1

d+2 , where d = 2, 3 is 
the dimension of the problem [33]. Starting from any 
point x on the boundary, the next two sampling points on 
the boundary are chosen to be the points with a distance 
to x of h(x) . The sampling is propagated from any point 

on the boundary to cover the entire boundary. To achieve 
a more accurate distribution of boundary point locations 
according to the density function �(x) , we apply the aver-
aged Voronoi vertex (AVV) method [21] to the boundary 
sites using 30 iterations.

To create the initial mesh R , we randomly distribute N ver-
tices within the boundary and use all the sites to construct 
the Delaunay triangulation. However, since the vertices are 
randomly placed, the resulting mesh quality of R at this 
stage is unpredictable.

Population initialization To generate the initial mesh 
population, we perturb the initial mesh R given na agents. 
Each vertex in R is randomly perturbed in a unit direction 
with a maximum magnitude of 0.5 times the average length 
of its adjacent edges, as illustrated in Fig. 6. Our perturba-
tion approach is similar to that described in [21] and [52]. 
This results in a population of meshes with corresponding 
vertices which have the same index. Here, ‘correspond-
ing’ denotes that the particular vertex in the mesh agent is 
obtained through perturbation from a specific vertex in the 
initial mesh. Note that agents in the population with identical 
input vertices will produce the same triangulation and ODT 
energy. For simplicity, we consider only the agents with 
ordered sites in the population, where the input vertex set is 
a sequentially ordered collection based on the indices of the 
vertices. The initial mesh’s vertex index is assigned accord-
ing to the sequence of inserted vertices. In subsequent global 
optimization algorithms, the algebraic operations among 
agents degrade to the corresponding algebraic operations 
among the associated vertices. Our perturbation approach 
reduces the search space of vertices from the whole domain 
to the neighborhood area of corresponding vertices.

5.2  Global search

ODT energy function is non-convex and non-smooth, which 
means it can easily get trapped in local minima when only 
local search is performed. Therefore, a global optimiza-
tion approach is needed to jump out of the local minimum 
and explore the search space efficiently. We believe that 
WOA is a suitable choice for our problem due to its sim-
ple operators, fewer parameters, and strong ability to jump 
out of local optima. Hence, we modify the WOA algorithm, 
referred to as MWOA, to better suit our particular optimiza-
tion problem, and the resulting framework is presented in 
Algorithm 1.

5.2.1  Update formula

To adapt the ODT optimization problem, a weight � and 
the average length of incident edges of vertices in mesh are 

Fig. 6  Perturbation process for population initialization. a The initial 
mesh with two interior points (red dots), where the disturbance range 
of each inner point is represented by a circle (purple) with a radius 
equal to half the average length of its adjacent edges. b An agent in 
the population is generated by perturbing the inner vertices within the 
corresponding disturbance range (purple circle)
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introduced in the MWOA. To enhance further discussions, 
we reintroduce a matrix representation for the coordinates 
of all vertices belonging to an agent, as opposed to using a 
vector.

In the kth iteration, considering the population of 
meshes denoted as Pk , each agent is represented by a matrix 
Xk ∈ ℝ

n×d that stores the vertex positions. The matrix Xk 
consists of n rows, where each row corresponds to the posi-
tion of a vertex, and d represents the dimensionality of the 
vertex positions. Furthermore, lk ∈ ℝ

n is a vector associated 
with an agent in the kth iteration. Each element of lk repre-
sents the average length of the incident edges connected to 
the corresponding vertices of the agent. Additionally, in the 
kth iteration, Xk

r
 and Xk

b
 , or lk

r
 and lk

b
 , refer to the position 

matrix or average length vector, respectively, of a randomly 
selected agent and the best agent from the population Pk.

The matrix Xk+1 for each agent in the (k + 1) th population 
is generated from the population Pk using one of the follow-
ing three operators: encircling prey, searching for prey, and 
bubble-net attacking. The operator selection depends on the 
values of p and ã . Here, ã is calculated as ã = ar1 , where r1 
is a random number in the range [−1, 1] . The random vari-
ables p and l are sampled from the intervals [0, 1] and [−1, 1] 
respectively. Moreover, random vectors c are generated from 
the range [0, 2]n . The parameters s, a and � are real numbers 
that are chosen based on specific considerations, which will 
be discussed in subsequent section. Algorithm 1 provides 
detailed instructions on how these operators are applied in 
the evolutionary process.

• Encircling prey

• Searching for prey

• Bubble-net attacking

5.2.2  Parameter settings

Our proposed MWOA (Modified Whale Optimization Algo-
rithm) method incorporates three parameters: s, a, and � . 
The parameter s and a are inherited from the original WOA, 
while � is a newly introduced parameter. The value of s 
determines the range of steps used during the bubble-net 
attacking process. In our extensive testing with different ini-
tial meshes and varying vertex numbers, we discovered that 
adjusting the value of s within the range of [3.2, 6.2] had 
minimal impact on the resulting mesh energy. Consequently, 

(8)Xk + 1 = Xk
b
− 𝜔ã ⋅ 𝜙(⌊c⌉ ⋅ Xk

b
− Xk) ⋅

�
l
k
b

�
.

(9)Xk + 1 = Xk
r
− 𝜔ã ⋅ 𝜙(⌊c⌉ ⋅ Xk

r
− Xk) ⋅

�
l
k
r

�
.

(10)Xk + 1 = Xk
b
+ �esl cos(2�l) ⋅ �(Xk

b
− Xk) ⋅

⌊
l
k
b

⌉
.

for this specific case, we chose to set s to 3.6. However, we 
found that the parameters a and � exerted a more substantial 
influence on the performance of the algorithm. Therefore, 
our focus has been on fine-tuning a and � to achieve optimal 
results in our particular problem.

Parameter a controls the changes between the encircling 
prey and searching for prey operators. On the other hand, 
parameter � determines the proximity relationship between 
(k + 1)th population and either the best agent or a randomly 
selected agent from the kth population. These parameters 
determine the extent to which the algorithm balances 
between random exploration of the search space and thor-
ough investigation of promising areas. Given the unknown 
distribution of vertices in the initial mesh, it is natural to 
prioritize random exploration of the search space to identify 
potentially promising solution regions. Subsequently, further 
investigation can be conducted in these identified areas. 
Motivated by the effectiveness of the sigmoid function in 
binary classification tasks, a modified sigmoid function 
called the specular sigmoid function can be employed. The 
specular sigmoid function decreases within the interval [�, �] 
and is denoted as f (x) = � − (� − �)

1

1+e−x
 . This function is 

utilized as a guide in the parameter selection process, 
enhancing the exploration and exploitation capabilities of 
MWOA.

• a setting In the original WOA, the parameter a decreases 
linearly from 2 to 0 as the iterations progress. However, 
this linear decrease can lead to the algorithm getting 
trapped in local optima, especially in our problem where 
the ability to explore declines rapidly. To overcome this 
limitation, we propose a modification to the WOA algo-
rithm by setting 
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Fig. 7  Performance of the parameters in MWOA with K = 100 . a 
The performance of parameter a with respect to the iteration. b The 
cyan circle which means the � value of an agent. We can figure out 
the � distribution of the agent as the number of iterations increases. 
The probability of choosing 2�0 is 80% before the 50th iteration, after 
the probability is decreasing to 50%
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 where k is the current iteration and K is the maximal 
number of iterations. In Fig. 7a, the parameter a follows 
a pattern similar to the specular sigmoid function, gradu-
ally decreasing from 2 to 0 with a sharp drop around the 
midpoint (K/2). The initial high values of a indicate a 
preference for the exploration-based “searching for prey" 
operator, enhancing the algorithm’s ability to explore the 
search space. This improved exploration contributes to 
better performance in finding the global optimal solution. 
However, this setting also increases the risk of premature 
convergence, where the algorithm converges to a sub-
optimal solution prematurely. To address this issue, we 
introduce another parameter, � , to the algorithm.

• � setting To control population diversity, we introduce 
the parameter � and utilize the specular sigmoid function 
in its selection. To overcome premature convergence, we 
divide the population into two parts: one with a larger 
� for exploring the search space, and the other with a 
smaller � for investigating promising areas. Specifically, 
we set: 

 where 

 and t is a random number in [0, 1]; see Fig. 7b.

(11)a = 2 − 2
1

1 + e
−(k−

K

2
)
,

(12)𝜔 =

{
2𝜔0 t ≥ t0
0.5𝜔0 t < t0

,

(13)�0 = 2 −
1

1 + e
−(k−

K

2
)
, t0 = 0.2 + 0.3

k

K
,

5.3  Local search

To address the challenge of quickly obtaining a local mini-
mum solution in the stochastic nature of MWOA, we incor-
porate the L-BFGS method, known for its energy decline 
and fast convergence as demonstrated in [21]. This integra-
tion takes advantage of the piecewise C∞ continuity property 
of the ODT energy function when the triangulation’s topol-
ogy remains fixed. During our global optimization process, 
the L-BFGS method is applied to all agents in the popula-
tion. We set a maximum of 20 iterations per agent, striking 
a balance between exploration and exploitation. To further 
refine the solution, we perform an additional 30 iterations of 
the L-BFGS method before selecting the mesh with the best 
energy. This additional step allows for further minimization 
and improvement of the selected mesh.

5.4  Speedup strategies

The algorithm can become time-consuming, especially dur-
ing the local search phase, due to the requirement of recal-
culating the Delaunay triangulation whenever the positions 
of the mesh vertices are modified. To mitigate this issue 
and improve efficiency, we employ different optimization 
schemes tailored to meshes with varying initial qualities. 
Additionally, we parallelize the hybrid algorithm to further 
enhance its performance.

To mitigate computation time, we utilize the uniformity 
of simplex quality as an indicator of the mesh’s quality and 
exclude local search during the early iterations. To meas-
ure the uniformity of a mesh T = {�} , we employ a metric 
proposed by Persson and Strang [53], which is defined as 
follows:

Fig. 8  The examples tested in 
this paper
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where Q� = ∫
�
�(x)dx represents the weighted area of 

a simplex � with a density function �(x) defined over the 
simplex � , M is the number of simplex in the mesh and 
Q∗ =

1

M

∑
�∈T Q� is the average value of Q� over all the sim-

plices in the mesh. If the value of the uniformity metric U(T) 
for the mesh T exceeds a predefined threshold of 1, indicat-
ing poor mesh quality, we limit the optimization to MWOA’s 
global search during the earlier iterations. To implement this 
approach, we introduce two parameters: the divided number 
z and the specific iteration m. If the current iteration k is not 
a multiple of z and is less than m, we exclusively employ 
MWOA without the use of L-BFGS. Through our experi-
ments, we have found that setting z = 3 and m = 30 strikes 
a good balance between local and global search.

In addition to utilizing different optimization schemes 
and excluding local search in certain iterations based on 
mesh quality, we have parallelized the operations for dif-
ferent agents in each iteration to enhance efficiency. By lev-
eraging the inherent parallelism of our methods, we assign 
separate threads to each agent, maximizing CPU utilization 
and reducing runtime. However, it is important to strike a 
balance between speed and overhead. With consideration of 
the CPU capacity of our device, we have set the number of 
threads to 10. This choice minimizes time spent on thread 
switching and termination while still achieving significant 
improvements in performance. In the upcoming section, we 
will present experimental results that demonstrate the time 
reduction achieved through this parallelization approach.

6  Experimental results

In this section, we present the results of our experiments on 
the proposed meshing method, referred as Global-MWOA, 
and compare them with those obtained using classic meth-
ods such as Tetgen [54] and Gmsh [55], as well as state-
of-the-art methods such as Global-SA [21] and fTetWild 
[56]. We evaluate our approach on various 2D and 3D exam-
ples in Fig. 8 and dataset from paper [57], and provide a 
detailed analysis of the results using evaluation metrics such 
as aspect ratio, radius ratio, angle, the number of slivers, 
ODT energy, etc. In the following, uniformity is defined in 
Eq. (14), the angle represents the minimum angle of each 
triangle and dihedral angle denotes the dihedral angle within 
each tetrahedron. A tetrahedron is considered as a sliver if it 
has a dihedral angle less than 5◦ or 10◦ . The aspect ratio and 
radius ratio of each simplex are based on [58, 59]. Weighted 
area of a simplex � can be computed as Q� = ∫

�
�(x)dx with 

a density function �(x) defined over the simplex � . The color 

(14)U(T) =

√
1

M

∑
�∈T

(
Q�

Q∗
− 1)2,

bar of each figure represents the average edge length of each 
element, with darker colors indicating larger lengths.

Our meshing method is implemented in C++, utilizing 
CGAL [60] for computing Delaunay triangulation in 2D and 
3D domains. For local search, we use the HLBFGS [61] 
library to calculate the updated mesh population. During 
global optimization, we perform fast matrix operations 
with Eigen [62] and visualize the result using the Polyscope 
libraries [63]. We take advantage of OpenMP for parallel 
computing and measure the time on a PC with an 11th Gen 
Intel(R) Core(TM) i5-11400F 2.60GHz CPU and 16GB of 
RAM. In our experiments, we set the number of agents to 
na = 100 in 2D and na = 50 in 3D, the maximum iterations 
to K = 100 , the number of partitions to z = 3 , the specific 
iteration to m = 30 , and the number of threads to nt = 10 , 
except for the acceleration ratio test.

Fig. 9  Mesh results from different initial mesh. a–d illustrate differ-
ent initial meshes, while e–h showcase the results obtained by the 
Global-MWOA algorithm corresponding to the initial meshes (a–d)
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6.1  Evaluation of the algorithm

Different initial meshes Due to its exceptional global opti-
mization capabilities, Global-MWOA consistently produces 
favorable results for various initializations, with minimal 
sensitivity to the choice of initialization, as illustrated in 
Fig. 9. Even for significantly diverse initializations, our 
Global-MWOA method always yields commendable 
outcomes.

Different boundary sampling To generate high-quality 
volumetric meshes, Global-MWOA requires input surface 
meshes that are of good quality post-remeshing and consist-
ently maintains the quality of the input surface mesh during 
optimization. Consequently, the quality of the input mesh, 

which is the result of boundary sampling, does have an influ-
ence on the quality of the generated volumetric mesh. Fig-
ure 10 illustrates surface meshes of varying quality obtained 
through two different boundary sampling approaches for the 
same model, along with corresponding volumetric mesh 
results generated using Global-MWOA. Table 1 presents 
quality metrics for the volumetric meshes corresponding to 
the images (c–d) in Fig. 10. The results from Fig. 10 and 
Table 1 indicate that Global-MWOA is sensitive to the 
quality of the input surface boundary sampling. The bolded 
results in the following table indicate superior performance.

Different algorithm parameters Parameters z and m are 
designed to control and optimize the initial stages of the 
L-BFGS process by assessing the uniformity of the initial 

Fig. 10  Mesh results from different boundary sampling. a, b depict surface meshes with two distinct boundary sampling, while c, d showcase 
sectional views of the volumetric mesh results obtained using these two meshes as inputs for the Global-MWOA method

Table 1  Comparison of mesh quality with different boundary mesh

(a), (b) refer to the Fig. 10a, b
Results in bold indicate superior performance

Boundary 
sampling

#Vert Uniformity Radius ratio Dihedral angle Slivers

Min Avg Min Avg min Max Avg max <5 ◦ <10 ◦

(a) 1142 0.410321 1.98892e−09 0.797824 0.0022646 46.2683 179.995 99.7562 118 172
(b) 2799 0.198753 0.0913938 0.894991 4.24598 53.2274 172.429 91.9135 1 8

Fig. 11  The impact of param-
eter variations on the global 
optimization of the ODT energy 
function. a Parameters z and 
m. b Parameter s. The color 
representation in (a) and y-axis 
coordinates in (b) represent 
the average normalized energy 
values across multiple models
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mesh, thereby reducing time consumption. To examine 
the impact of different values of parameters z and m on 
the algorithm, we randomly selected 11 models (including 
five 2D models and six 3D models) and devised extreme 
initializations. From Fig. 11a, it is observed that larger 
values of z and m lead to higher energy function values. To 
balance mesh quality and time consumption in our experi-
ments, we set the parameters as z = 3 and m = 30.

Parameter s is utilized to control the step size range 
during the bubble-net attacking process in the Global-
MWOA. Similarly, we randomly selected 26 models (com-
prising thirteen 2D and thirteen 3D models) with vary-
ing vertex counts ranging from 200 to 5000. The models 
exhibit diverse initializations in terms of uniformity, and 
the objective functions include both with and without 
constant density function formulations. We conducted 
experiments to assess the impact of parameter s on our 
algorithm. From Fig. 11b, we observe a general trend of 
decreasing average energy followed by an increase with 
the growth of s. We find that the choice of s in the interval 
[3.2, 6.2] has a limited impact on the experimental results. 

In our experiments, we set s to a specific value, namely, 
3.6.

6.2  Comparisons on 2D domain

In the 2D domain, we conducted experiments to generate 
both uniform meshes and meshes with density functions. 
Our algorithm was tested on various 2D domains to evaluate 
its performance. To assess the effectiveness of our global 
optimization algorithm, we used extreme initializations, as 
depicted in Fig. 8, to create challenging scenarios for global 
optimizations. In our study, we exclusively compare our 
algorithm with the established method for generating meshes 
using ODT energy for global optimization. The competitor 
algorithm, known as Global-SA and proposed by Chen et al. 
[21], is used as a reference for our comparisons. We utilized 
the completion time of our algorithm as the stopping condi-
tion for the Global-SA method. In addition, we compared the 
ODT energy and mesh quality of meshes generated by both 
approaches over similar running times. Better mesh quality 
is characterized by lower energy, angles closer to 60◦ , aspect 
ratios and radius ratios closer to 1, and lower uniformity 
values (Eq. 14).

Table 2 demonstrates the advantage of our algorithm over 
Global-SA. Our algorithm consistently generates meshes 
with lower ODT energy and higher uniformity compared 
to Global-SA, starting from the same initial mesh. This 
suggests that our algorithm better conforms to the desired 
vertex distribution defined by the density function. Conse-
quently, our optimization algorithm outperforms Global-SA 
by producing smaller local minima, showcasing its superior 
global optimization capabilities. Note that, in the curve and 
jigsaw (density) examples, our algorithm achieves slightly 
lower values for average angle, average aspect ratio, and 

Table 2  Comparison of Global-SA and our algorithm performance in various domains

The vertex numbers in the boundary are provided below each domain name. Results in bold indicate superior performance

Domain (#Vert) Method ODT energy Uniformity Angle Aspect ratio Radius ratio Time/s

Avg Min Avg Min Avg Min

Dumbbell
(500)

Global-SA 250.088 0.606432 53.4332 32.3589 0.923314 0.577173 0.972925 0.639748 49.958
Ours 181.443 0.0888114 55.8262 36.2725 0.953819 0.750708 0.988243 0.849305 49.855

Square hole
(500)

Global-SA 0.000210545 0.149884 53.7983 38.2578 0.929554 0.668689 0.98101 0.769393 58.96
Ours 0.000208115 0.112504 53.9536 38.7073 0.933018 0.759673 0.981499 0.866175 58.848

Tree
(500)

Global-SA 0.252239 0.197124 53.0149 24.5672 0.919317 0.522277 0.974237 0.561312 46.287
Ours 0.245853 0.12711 53.3616 24.5672 0.926572 0.522277 0.977807 0.561312 46.22

Curve
(200)

Global-SA 2.76596 0.275916 48.5436 30.0085 0.86049 0.579431 0.938976 0.65327 32.813
Ours 2.67666 0.198486 48.0821 33.6562 0.859834 0.654102 0.940317 0.744273 32.766

Jigsaw (uniform)
(250)

Global-SA 0.116355 0.163398 52.1271 25.8004 0.912936 0.548961 0.967865 0.624712 23.009
Ours 0.114592 0.124207 53.7039 30.3653 0.916763 0.595765 0.969254 0.678837 22.974

Jigsaw (density)
(250)

Global-SA 0.226459 0.344341 51.6637 32.6543 0.901345 0.662847 0.965121 0.761189 34.378
Ours 0.214488 0.325862 51.4356 34.4121 0.897101 0.680288 0.963733 0.785373 34.337

Table 3  Quantitative measurement of consistency for Global-SA and 
our Global-MWOA method

Bold indicates that the probability distribution of vertices in this 
region is closer to the target probability

Domain Target probabil-
ity (%)

Global-SA (%) Global-
MWOA 
(%)

1 1.3 1.9 2.5
2 43.2 38.8 43.6
3 16.8 23.2 16.6
4 18.5 13.5 14.1
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average radius ratio compared to Global-SA. However, this 
small discrepancy does not imply that Global-SA’s results 
are superior. Figure 12 visually demonstrates the comparison 
between the resulting meshes generated by both methods 
for the jigsaw (density) example. Considering the density 
function �(x) = ‖x‖2 + 0.2 , it is expected that the left side 
circle of the jigsaw should have the same density as the cir-
cle above it. Thus, having a similar number of vertices in 
the two small circles aligns better with the density func-
tion. Simultaneously, we introduce a quantitative measure 
of consistency: the probability of vertices being in a specific 
region [64]. The density function implies the target prob-
ability of vertices being in certain regions. If the probabil-
ity of vertices being in a particular region approaches the 
target probability, it indicates that the vertex distribution 
density of the mesh is closer to the density function. As 

depicted in Fig. 12, where (g) shows color representation of 
density function values with corresponding region numbers 
indicated, and (h-i) present the vertex distribution of mesh 
results obtained by Global-SA and Global-MWOA algo-
rithms. Table 3 illustrates the target probabilities for differ-
ent regions and the actual probabilities of vertex distribution 
obtained by the two methods. It is evident that our Global-
MWOA results’ vertex distribution probabilities are closer 
to the target probabilities, indicating a better alignment with 
the density function.

Figure 13 displays the energy curves over time for the six 
examples in Table 2. Our algorithm converges faster than 
Global-SA, and the energy remains lower over the same 
period of time.

We compare the uniformity results of two selected exam-
ples, the tree and dumbbell, as shown in Figs. 14 and 15, 

Fig. 12  Comparison between Global-SA and our algorithm with density function �(x) = ‖x‖2 + 0.2 in the boundary jigsaw



2609Engineering with Computers (2024) 40:2595–2616 

0 5 10 15 20 25 30 35 40 45 500
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1 ·10

4

Time/s

E
ne
rg
y

Global-SA
Global-MWOA

30 50
180
230
280

(a) Dumbbell

0 5 10 15 20 25 30 35 40 45 500
1
2
3
4
5
6
7
8
9

Time/s

E
ne
rg
y

Global-SA
Global-MWOA

30 48
2.45
2.5
2.55

·10−1

(b) Tree

0 4 8 12 16 20 240
1
2
3
4
5
6
7
8
9

Time/s

E
ne
rg
y

Global-SA
Global-MWOA

14 24
1.15
1.16

·10−1

(c) Jigsaw (uniform)

0 10 20 30 40 50 600
0.5
1

1.5
2

2.5
3

3.5
4 ·10

−3

Time/s

E
ne
rg
y

Global-SA
Global-MWOA

30 60
2.08
2.12
2.16 ·10−4

(d) Square hole

0 5 10 15 20 25 30 352.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5

Time/s

E
ne
rg
y

Global-SA
Global-MWOA

15 35
2.68

2.76

(e) Curve

0 5 10 15 20 25 30 350
2
4
6
8
10
12

Time/s

E
ne
rg
y

Global-SA
Global-MWOA

15 35
2.15
2.2
2.25

·10−1

(f) Jigsaw (density)

Fig. 13  Energy plot of Global-SA and our algorithm with respect to 
the time. a–f Respectively shown for six different examples. Here, 
‘jigsaw(uniform)’ and ‘jigsaw(density)’ refer to cases where the tar-

get mesh is uniform and has density �(x) = ‖x‖2 + 0.2 in the jigsaw 
region, respectively
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Fig. 14  Comparison between Global-SA and our algorithm to generate uniform results in the boundary tree
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respectively. Both Global-SA and our approach are applied 
to the same initial mesh with the same running time. Com-
pared to Global-SA, our approach yields results closer to the 

global optimum within a given time, where the given time 
corresponds to the execution duration of our algorithm, as 
illustrated in Figs. 14 and 15. In contrast, Global-SA fails to 

(a) Initial mesh (b) Global-SA (c) Global-MWOA
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Fig. 15  Comparison between Global-SA and our algorithm to generate uniform results in the boundary dumbbell

Table 4  Comparison of the performance of Global-SA and our algorithm in 3D domains

#Vert represents the number of vertices in the mesh. Results in bold indicate superior performance

Domain #Vert Method ODT energy Uniformity Radius ratio Dihedral angle Slivers Time/s

Min Avg Min Max < 5 ◦ < 10 ◦

Eraser ball 3710 Global-SA 0.0389095 0.802258 1.12612e−07 0.765257 0.512939 179.977 161 434 941.501
Ours 0.0387632 0.27613 0.0919047 0.897301 4.8119 173.251 1 4 940.387

Hilbert cube 3303 Global-SA 5.37238e+09 0.667163 0.0327842 0.894748 1.92566 177.681 2 13 863.339
Ours 21195.8 0.189062 0.090314 0.895049 5.20237 173.29 0 6 860.617

Table 5  Comparison of mesh quality with meshes generated by different tools

Results in bold indicate superior performance

Method #Vert Radius ratio Dihedral angle Slivers Time/s

Min Avg Min Avg min Max Avg max < 5 ◦ < 10 ◦

Gmsh 6353 0.30029 0.801186 13.2039 47.3334 156.676 101.58 0 0 0.45888381
TetGen 6354 0.146943 0.793966 8.35435 47.3694 164.829 102.338 0 13 0.062
fTetWild 6442 0.357043 0.878641 21.5749 54.15 143.288 94.6218 0 0 3.25545
Ours 6354 0.166533 0.91293 7.35798 54.3388 166.159 89.8309 0 1 4490.96
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achieve similar results to Figs. 14c and 15c within 4000 s. 
Additionally, our algorithm performs better in density sce-
narios, as illustrated in Fig. 12.

In terms of local search ability, MWOA is inferior to the 
simulated annealing method used in Global-SA. By evalu-
ating the uniformity of the initial mesh, we can switch to 
a global–local optimization approach using Global-SA, 
resulting in faster convergence to the minimum. Within this 
framework, our proposed method not only generates high-
quality meshes quickly but also mitigates the impact of ini-
tialization on the optimization of ODT energy generation 
meshes.

6.3  Comparisons on 3D domain

We also show the performance of our algorithm in 3D. 
For the sake of simplicity, a remeshing surface mesh with 
the desired density distribution is adopted as input. It has 
been proven that minimizing the ODT energy function will 
attempt to equidistribute weighted volumes and edge lengths 
of all simplices in the triangulation when the density func-
tion is piecewise constant [29]. Based on this theorem, we 

can draw a hypothesis that optimizing ODT energy globally 
can reduce slivers when generating graded mesh.

Similar to the 2D example, we employed extreme initiali-
zation to evaluate the global optimization abilities of both 
methods. Figure 16 illustrates the vertex positions and cross-
section meshes of our initialization. Our algorithm outper-
formed Global-SA in terms of global minimum and mesh 
quality within the same time frame, as indicated in Table 4. 
With the same initial mesh, Figs. 17 and 18 demonstrate that 
the resulting mesh generated by our algorithm is better than 
Global-SA, both in terms of ODT energy, number of slivers 
and distribution of radius ratio and dihedral angle.

A desirable distribution of radius ratios and dihedral 
angles aims to maintain high uniformity while ensuring 
that each simplex closely approaches the optimal values of 
1 for the radius ratio and 60 degrees for the dihedral angle. 
The Global-SA method shows that while many elements 
approach the optimal values, some deviate significantly, even 
reaching extreme values. In contrast, our algorithm achieves 
a more concentrated distribution of radius ratios and dihe-
dral angles within the simplices, resulting in improved 
overall uniformity. This indicates our algorithm is robust 
to the initial mesh and does not rely on matching the point 

Fig. 16  Initialization of 3D 
examples. a–d Respectively 
represent the initial points and 
initial mesh of the eraser ball 
and the Hilbert cube
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initialization to the density function. It can generate meshes 
that conform to the density function regardless of the initial 
mesh configuration.

Furthermore, when generating tetrahedral meshes, our 
algorithm optimizes the ODT energy function, resulting 
in high-quality meshes with better average quality of ele-
ments. To demonstrate this, we compare our algorithm 
with existing mesh generation tools such as fTetWild [56], 
Gmsh [55], and TetGen [54] using the same input sur-
face mesh and uniform density function. Table 5 presents 
the statistics of the quality of cubic meshes generated by 

different tools. The results highlight the superiority of 
our algorithm in terms of average radius ratio, average 
minimum/maximum dihedral angle. However, it should 
be noted that our algorithm requires more time due to the 
optimization process based on population.

Dataset We conducted experiments on the dataset 
presented in [57], which comprises a total of 108 mod-
els. As our algorithm aims to generate high-quality volu-
metric meshes, we excluded three open models from the 
dataset. We first preprocessed the remaining 105 mod-
els using CGAL, subjecting them to isotropic remeshing. 

Fig. 17  Comparison of the 
meshes and its slivers between 
Global-SA and our algo-
rithm with density function 
�(x) = ‖x‖2 + 0.2 in eraser ball 
(top) with density sites near the 
boundary and with uniform sites 
around Hilbert cube (bottom)
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Subsequently, these remeshing models serve as input for our 
Global-MWOA method to produce high-quality volumetric 
meshes. Partial results of the high-quality meshes gener-
ated using the Global-MWOA method on this dataset are 
depicted in Fig. 19. We employed the fTetWild method to 
obtain results corresponding to the Global-MWOA method, 
with a comparable number of mesh vertices. Furthermore, 
we computed and analyzed the average radius ratio, as well 
as the distribution of average minimum/maximum dihedral 
angles for both fTetWild and Global-MWOA methods on 

the dataset. Figure 20 illustrates that, under this dataset, our 
method achieves superior average radius ratio and average 
minimum/maximum dihedral angle distributions compared 
to fTetWild.

Numerical examples An ODT implies the triangulation in 
which the vertex distribution aligns closely with the density 
function or exhibits overall better quality. For solving partial 
differential equations using finite element methods, the over-
all average mesh quality significantly influences the solution 
outcomes [21]. In this context, we consider testing a 3D 
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Fig. 18  Comparison of energy graph, the distribution of radius ratio and dihedral angle between Global-SA and our algorithm in eraser ball (top) 
and Hilbert cube (bottom)

Fig. 19  Part models of the 
dataset
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Poisson problem with an exact solution uexc(x) = x2 + y2 + z2 
and uexc(x) = ln(

√
(x2 + y2 + z2)) in domain Ω , as stated in 

Eq. (15).

We conducted tests on the dataset presented in [57], generat-
ing volumetric meshes using both fTeWild and 

(15)
Δu(x) = f (x) inΩ

u(x) = g(x) on �Ω
.

Global-MWOA methods. The comparison involves assess-
ing the normalized L2 error between the approximate solu-

tion and the exact solution as ‖uexc − uh‖L2 =
√∫

Ω
(uexc−uh)

2dx√∫
Ω
u2
exc

dx
 . 

  

Utilizing FEATool Multiphysics [65] to solve the Poisson 
equation yielded the error results depicted in Fig. 21. It is 
evident that, in many models, the Global-MWOA method 
yields volumetric meshes with vertices similar to those of 
fTetWild and, in most cases, exhibits smaller normalized L2 
errors when compared to fTetWild.

6.4 Acceleration effect

We  have  utilized  OpenMP  to  optimize  our  algorithm 
on the CPU. Due to the limitation of the device’s CPU 
core,  we  have  only  tested  the  performance  using  1–12 
threads. For evaluating the acceleration performance, we 
have selected the dumbbell example with 1000 interior 
points. The results obtained are presented in Fig. 22. As 
we increase the number of threads, the runtime decreases 
and the speedup ratio increases. However, as the number 
of threads continues to increase, the speedup ratio levels 
off. This is because we have only parallelized the optimi- 
zation part during each iteration and had to wait for all
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Fig. 20  The distribution of average radius ratio, average min/max dihedral angle of fTetWild and Global-MWOA under 105 models

Fig. 21  L2 error vs. number of 
vertex for the dataset. Lines 
connect two points from the 
same model. The red instances 
in the pairs indicate models 
where the Global-MWOA 
method produces mesh solu-
tions with lower errors com-
pared to fTetWild, while the 
blue pairs represent the opposite 
scenario. a, b depict 98 and 83 
red pairs, respectively
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threads to complete before proceeding to the next iteration. 
Therefore, the runtime and acceleration ratio are likely to 
level off. We can observe that the best acceleration ratio is 
achieved when using 10 threads. Consequently, we set the 
number of threads to 10 in our subsequent experiments.

7  Conclusions

This paper presents a hybrid algorithm, that combines 
MWOA with L-BFGS to address the optimization problem 
of the ODT energy function. The algorithm takes advantage 
of the global search capabilities of MWOA and the local 
optimization capabilities L-BFGS. Additionally, OpenMP is 
employed to parallelize computations and decrease the run-
ning time for the local optimization process with poor ini-
tialization. The computational results demonstrate that our 
algorithm is robust to the initial mesh and achieves superior 
mesh quality compared to existing approaches. Furthermore, 
the algorithm exhibits improved running time efficiency.

One main drawback of our current algorithm is its rela-
tively long running time, particularly in the 3D domain. In 
our algorithm, as the number of mesh vertices increases, 
large-scale matrix operations become prominent. GPUs, 
equipped with numerous small cores, are well-suited for 
accelerating such operations, demonstrating the potential 
to expedite our method. However, extending the algo-
rithm to the GPU may encounter challenges in handling 
frequent branching and data transfers between CPU and 
GPU during the transition, which could impede perfor-
mance improvement. Future work includes addressing 
the challenge of improving running time by extending 
the algorithm to utilize GPU acceleration. Additionally, 
we plan to explore the application of our algorithm to 
other problems, such as mesh simplification. Similar to 
the ODT energy, there are various forms of energy com-
posed of the Jacobian matrix, employed for assessing 
mesh quality. In the future, we aim to extend the algo-
rithm to encompass a broader range of energies derived 
from the Jacobian matrix, enhancing its applicability in 
diverse scenarios.
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