FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_HEATTRANSFER9 1D Transient heat diffusion with a point source.
[ FEA, OUT ] = EX_HEATTRANSFER9( VARARGIN ) Transient heat diffusion problem with a point source at one end and analytic solution.
+---------- L=20m ----------+ dT/dn = 0 Q(x=0) = 1 T(t=0) = 0
[1] Carslaw HS, Jaeger JC.Conduction of heat in solids, 2ndEd., Oxford at the Clarendon Press, 1959.
[2] Strang G, Fix G. An analysis of the Finite Element Method, 2nd Ed., Wellesley-Cambridge Press, 2008.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- nel scalar {100} Number of grid cells sfun string {sflag1} Finite element shape function solver string fenics/{} Use FEniCS or default solver ischeme scalar {2}/1/3 Time stepping scheme imass scalar {2}/1/3/4 Mass matrix lumping tmax scalar {0.2} Maximum time tstep scalar {0.01} Time step size iplot scalar {1}/0 Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'nel', 100; 'sfun', 'sflag1'; 'solver', ''; 'ischeme', 2; 'imass', 2; 'tmax', 1; 'tstep', 0.01; 'iplot', 1; 'tol', 1e-2; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); % Geometry and grid. L = 20; fea.sdim = { 'x' }; fea.geom.objects = { gobj_line(0,L) }; fea.grid = linegrid( opt.nel, 0, L ); % Physics definition. rho = 1; cp = 1; k = 1; Q = 0; T0 = 0; fea = addphys( fea, @heattransfer ); fea.phys.ht.eqn.coef{1,end} = { rho }; fea.phys.ht.eqn.coef{2,end} = { cp }; fea.phys.ht.eqn.coef{3,end} = { k }; fea.phys.ht.eqn.coef{5,end} = { Q }; fea.phys.ht.eqn.coef{6,end} = { T0 }; fea.phys.ht.sfun = { opt.sfun }; % Point source. fea.pnt.type = 'source'; fea.pnt.index = 0; fea.pnt.dvar = 1; fea.pnt.expr = 1; fea = parsephys( fea ); fea = parseprob( fea ); % Compute solution. if( strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', opt.fid, ... 'tstep', opt.tstep, 'tmax', opt.tmax, 'ischeme', opt.ischeme ); else [fea.sol.u,fea.sol.t] = solvetime( fea, ... 'tstep', opt.tstep, ... 'tmax', opt.tmax, ... 'ischeme', opt.ischeme, ... 'imass', opt.imass, ... 'init', { 'T0_ht' }, ... 'fid', opt.fid ); end % Analytical solution. x = fea.grid.p; t = fea.sol.t; for i=1:length(t) % Loop over time T_ref = 2*(t(i)/pi)^(1/2)*((exp((-x.^2./(4*t(i))))-0.5.*x.*(sqrt(pi/t(i)).*erfc((x./(2*sqrt(t(i)))))))); end % Error checking. T_sol = evalexpr( 'T', x, fea ); out.err = norm( T_ref(:) - T_sol(:) ); out.pass = out.err < opt.tol; % Postprocessing. if( opt.iplot ) figure, hold on plot( x, T_sol, 'b-', 'linewidth', 2 ) plot( x, T_ref, 'r--', 'linewidth', 1.5 ) grid on axis normal ax = axis; ax(1:2) = [0,2]; axis( ax ) title( sprintf('Solution at time %g',fea.sol.t(end)) ) ylabel('T') xlabel('x') legend( 'Computed solution', 'Analytical solution' ) end if( nargout==0 ) clear fea out end