FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_NAVIERSTOKES1 2D Example for incompressible stationary flow in a channel.
[ FEA, OUT ] = EX_NAVIERSTOKES1( VARARGIN ) Sets up and solves stationary Poiseuille flow in a rectangular channel. The inflow profile is constant and the outflow should assume a parabolic profile ( u(y)=U_max*4/h^2*y*(h-y) ). Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- rho scalar {1} Density miu scalar {0.001} Molecular/dynamic viscosity umax scalar {0.3} Maximum magnitude of inlet velocity h scalar {0.5} Channel height l scalar {2.5} Channel length igrid scalar 1/{0} Cell type (0=quadrilaterals, 1=triangles) hmax scalar {0.04} Max grid cell size sf_u string {sflag1} Shape function for velocity sf_p string {sflag1} Shape function for pressure iphys scalar 0/{1} Use physics mode to define problem (=1) solver string openfoam/su2/{} Use OpenFOAM, SU2, FEniCS, or default solver ischeme scalar {0} Time stepping scheme (0 = stationary) iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'rho', 1; 'miu', 1e-3; 'umax', 0.3; 'h', 0.5; 'l', 2.5; 'igrid', 1; 'hmax', 0.04; 'sf_u', 'sflag1'; 'sf_p', 'sflag1'; 'iphys', 1; 'solver', ''; 'ischeme', 0; 'iplot', 1; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Model parameters. rho = opt.rho; % Density. miu = opt.miu; % Molecular/dynamic viscosity. umax = opt.umax; % Maximum magnitude of inlet velocity. % Geometry and grid parameters. h = opt.h; % Height of rectangular domain. l = opt.l; % Length of rectangular domain. % Discretization parameters. sf_u = opt.sf_u; % FEM shape function type for velocity. sf_p = opt.sf_p; % FEM shape function type for pressure. % Geometry definition. gobj = gobj_rectangle( 0, l, 0, h ); fea.geom.objects = { gobj }; fea.sdim = { 'x' 'y' }; % Coordinate names. % Grid generation. if ( opt.igrid==1 ) fea.grid = gridgen(fea,'hmax',opt.hmax,'fid',fid); else fea.grid = rectgrid(round(l/opt.hmax),round(h/opt.hmax),[0 l;0 h]); if( opt.igrid<0 ) fea.grid = quad2tri( fea.grid ); end end n_bdr = max(fea.grid.b(3,:)); % Number of boundaries. % Boundary conditions. dtol = opt.hmax; i_inflow = findbdr( fea, ['x<',num2str(dtol)] ); % Inflow boundary number. i_outflow = findbdr( fea, ['x>',num2str(l-dtol)] ); % Outflow boundary number. s_inflow = ['2/3*',num2str(umax)]; % Definition of inflow profile. s_refsol = ['4*',num2str(umax),'*(y*(',num2str(h),'-y))/',num2str(h),'^2']; % Definition of velocity profile. % Problem definition. if ( opt.iphys==1 ) fea = addphys(fea,@navierstokes); % Add Navier-Stokes equations physics mode. fea.phys.ns.eqn.coef{1,end} = { rho }; fea.phys.ns.eqn.coef{2,end} = { miu }; fea.phys.ns.eqn.coef{5,end} = { s_inflow }; if( any(strcmp(opt.solver,{'openfoam','su2'})) ) fea.phys.ns.sfun = { 'sflag1', 'sflag1', 'sflag1' }; else fea.phys.ns.sfun = { sf_u sf_u sf_p }; % Set shape functions. end fea.phys.ns.bdr.sel(i_inflow) = 2; fea.phys.ns.bdr.sel(i_outflow) = 4; fea.phys.ns.bdr.coef{2,end}{1,i_inflow} = s_inflow; % Set inflow profile. fea = parsephys(fea); % Check and parse physics modes. else fea.dvar = { 'u' 'v' 'p' }; % Dependent variable name. fea.sfun = { sf_u sf_u sf_p }; % Shape function. % Define equation system. cvelx = [num2str(rho),'*',fea.dvar{1}]; % Convection velocity in x-direction. cvely = [num2str(rho),'*',fea.dvar{2}]; % Convection velocity in y-direction. fea.eqn.a.form = { [2 3 2 3;2 3 1 1] [2;3] [1;2]; [3;2] [2 3 2 3;2 3 1 1] [1;3]; [2;1] [3;1] [] }; fea.eqn.a.coef = { {2*miu miu cvelx cvely} miu -1; miu {miu 2*miu cvelx cvely} -1; 1 1 [] }; fea.eqn.f.form = { 1 1 1 }; fea.eqn.f.coef = { 0 0 0 }; % Define boundary conditions. fea.bdr.d = cell(3,n_bdr); [fea.bdr.d{1:2,:}] = deal( 0 ); fea.bdr.d{1,i_inflow} = s_inflow; [fea.bdr.d{:,i_outflow }] = deal([]); % fea.bdr.d{end,i_outflow} = 0; % Set pressure to zero on outflow boundary. fea.bdr.n = cell(3,n_bdr); end % Parse and solve problem. fea = parseprob(fea); % Check and parse problem struct. if( opt.iphys==1 && strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', fid, 'ischeme', opt.ischeme, 'tmax', 10 ); elseif( opt.iphys==1 && strcmp(opt.solver,'openfoam') ) if( opt.ischeme==0 ) dt = 1.0; tstop = 1000; ddtScheme = 'steadyState'; elseif( opt.ischeme==1 ) dt = 0.1; tstop = 100; ddtScheme = 'backward'; elseif( opt.ischeme>=2 ) dt = 0.1; tstop = 100; ddtScheme = 'CrankNicolson 0.9'; end logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = openfoam( fea, 'fid', fid, 'logfid', logfid, 'ddtScheme', ddtScheme, 'deltaT', dt, 'endTime', tstop ); fid = logfid; elseif( opt.iphys==1 && strcmp(opt.solver,'su2') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = su2( fea, 'fid', fid, 'logfid', logfid, 'ischeme', opt.ischeme, 'tstep', 0.5, 'tmax', 20+30*(opt.ischeme==1) ); fid = logfid; else if( opt.ischeme==0 ) jac.form = {[1;1] [1;1] [];[1;1] [1;1] []; [] [] []}; jac.coef = {[num2str(rho),'*ux'] [num2str(rho),'*uy'] []; [num2str(rho),'*vx'] [num2str(rho),'*vy'] []; [] [] []}; fea.sol.u = solvestat( fea, 'fid', fid, 'nsolve', 2, 'jac', jac ); % Call to stationary solver. else fea.sol.u = solvetime( fea, 'fid', fid, 'ischeme', opt.ischeme, 'tmax', 10 ); end end fea.sol.u = fea.sol.u(:,end); % Postprocessing. s_velm = 'sqrt(u^2+v^2)'; s_err = ['abs(sqrt((',s_refsol,')^2)-(',s_velm,'))']; s_len = ['(x>',num2str(3/4*l),')']; if ( opt.iplot>0 ) figure subplot(3,1,1) postplot(fea,'surfexpr',s_velm,'evaltype','exact') title('Velocity field') subplot(3,1,2) postplot(fea,'surfexpr','p','evaltype','exact') title('Pressure') subplot(3,1,3) postplot(fea,'surfexpr',[s_err,'*',s_len],'evaltype','exact') title('Error') end % Error checking. if ( size(fea.grid.c,1)==4 ) xi = [0;0]; else xi = [1/3;1/3;1/3]; end c_ind = find(evalexpr0(s_len,xi,1,1:size(fea.grid.c,2),[],fea))'; err = evalexpr0(s_err,xi,1,c_ind,[],fea); ref = evalexpr0(['sqrt((',s_refsol,')^2)'],xi,1,c_ind,[],fea); err = sqrt(sum(err.^2)/sum(ref.^2)); if( ~isempty(fid) ) fprintf(fid,'\nL2 Error: %f\n',err) fprintf(fid,'\n\n') end out.err = err; out.pass = err<0.06; if ( nargout==0 ) clear fea out end