FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_NAVIERSTOKES2 2D Example for incompressible flow in a square cavity.
[ FEA, OUT ] = EX_NAVIERSTOKES2( VARARGIN ) Sets up and solves stationary
[1] Botella O, Peyret R. Benchmark spectral results on the lid- driven cavity flow. Computers and Fluids 27(4):421–433, 1998.
[2] Erturk E, Corke TC, Gökcöl C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int- ernational Journal for Numerical Methods in Fluids 37(6):633–655, 2005.
[3] Nishida H, Satofuka N. Higher-order solutions of square driven cavity flow using a variable-order multi-grid method. International Journal for Numerical Methods in Engineering 34(2):637–653, 1992.
[4] Schreiber R, Keller HB. Driven cavity flows by efficient numerical techniques. Journal of Computational Physics 49(2):310–333, 1983.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- re scalar {1000} Reynolds number igrid scalar 0/{1}/2 Cell type (0=quadrilaterals, 1=triangles, 2=triangles converted from quadrilaterals) hmax scalar {0.02} Max grid cell size sf_u string {sflag1} Shape function for velocity sf_p string {sflag1} Shape function for pressure iphys scalar {1}/0 Use physics mode to define problem (=1) solver string openfoam/su2/{} Use OpenFOAM, SU2 or default solver iplot scalar {1}/0 Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 're', 1000; 'igrid', 1; 'hmax', 0.02; 'sf_u', 'sflag1'; 'sf_p', 'sflag1'; 'iphys', 1; 'solver', ''; 'ischeme', 0; 'iplot', 1; 'tol', 0.35; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Model parameters. rho = 1; % Density. umax = 1; % Maximum magnitude of inlet velocity. l = 1; miu = umax*l/opt.re; % Molecular/dynamic viscosity. % Grid parameters. hmax = opt.hmax; % Max allowable global element size. hmaxr = 2*hmax; % Max allowable element size on rectangle. % Discretization parameters. sf_u = opt.sf_u; % FEM shape function type for velocity. sf_p = opt.sf_p; % FEM shape function type for pressure. % Geometry definition. gobj = gobj_rectangle( 0, l, 0, l ); gobj.boundaries = gobj.boundaries([4,1,2,3]); fea.geom.objects = { gobj }; fea.sdim = { 'x' 'y' }; % Coordinate names. % Grid generation. switch opt.igrid case 1 fea.grid = gridgen(fea,'hmax',opt.hmax,'fid',fid); otherwise fea.grid = rectgrid(round(l/opt.hmax),round(l/opt.hmax),[0 l;0 l]); ib = zeros(1,size(fea.grid.b,2)); ib(fea.grid.b(3,:)==4) = 1; ib(fea.grid.b(3,:)==1) = 2; ib(fea.grid.b(3,:)==2) = 3; ib(fea.grid.b(3,:)==3) = 4; fea.grid.b(3,:) = ib; if( opt.igrid~=0 ) fea.grid = quad2tri(fea.grid,1); end end % Boundary conditions. n_bdr = max(fea.grid.b(3,:)); % Number of boundaries. dtol = opt.hmax; i_inflow = findbdr( fea, ['y>',num2str(l-dtol)] ); % Inflow (top) boundary. % Problem definition. if ( opt.iphys==1 ) fea = addphys(fea,@navierstokes); % Add Navier-Stokes equations physics mode. fea.phys.ns.eqn.coef{1,end} = { rho }; fea.phys.ns.eqn.coef{2,end} = { miu }; fea.phys.ns.sfun = { sf_u sf_u sf_p }; % Set shape functions. fea.phys.ns.bdr.sel(i_inflow) = 2; fea.phys.ns.bdr.coef{2,end}{1,i_inflow} = umax; % Set inflow profile. fea = parsephys(fea); % Check and parse physics modes. else fea.dvar = { 'u' 'v' 'p' }; % Dependent variable name. fea.sfun = { sf_u sf_u sf_p }; % Shape function. % Define equation system. cvelx = [num2str(rho),'*',fea.dvar{1}]; % Convection velocity in x-direction. cvely = [num2str(rho),'*',fea.dvar{2}]; % Convection velocity in y-direction. fea.eqn.a.form = { [2 3 2 3;2 3 1 1] [2;3] [1;2]; [3;2] [2 3 2 3;2 3 1 1] [1;3]; [2;1] [3;1] [] }; fea.eqn.a.coef = { {2*miu miu cvelx cvely} miu -1; miu {miu 2*miu cvelx cvely} -1; 1 1 [] }; fea.eqn.f.form = { 1 1 1 }; fea.eqn.f.coef = { 0 0 0 }; % Define boundary conditions. fea.bdr.d = cell(3,n_bdr); [fea.bdr.d{1:2,:}] = deal( 0); fea.bdr.d{1,i_inflow} = umax; fea.bdr.n = cell(3,n_bdr); % Add integral pressure constraint. fea.constr.type = 'intsubd'; fea.constr.dvar = 'p'; fea.constr.index = []; fea.constr.expr = 0'; end % Parse and solve problem. fea = parseprob(fea); % Check and parse problem struct. if( opt.iphys==1 && strcmp(opt.solver,'openfoam') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = openfoam( fea, 'fid', fid, 'logfid', logfid ); fid = logfid; elseif( opt.iphys==1 && strcmp(opt.solver,'su2') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = su2( fea, 'tol', 3e-7, 'fid', fid, 'logfid', logfid ); fid = logfid; elseif( opt.iphys==1 && strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', fid, 'nlrlx', 0.5, 'maxnit', 50 ); else if( opt.ischeme==0 ) fea.sol.u = solvestat( fea, 'fid', fid, 'maxnit', 50 ); % Call to stationary solver. else [fea.sol.u,fea.sol.t] = solvetime( fea, 'fid', fid, 'ischeme', opt.ischeme, 'tmax', 8 ); % Call to stationary solver. end end % Postprocessing. s_velm = 'sqrt(u^2+v^2)'; if ( opt.iplot>0 ) figure subplot(3,1,1) postplot(fea,'surfexpr',s_velm,'evaltype','exact') title('Velocity field') subplot(3,1,2) postplot(fea,'surfexpr','p','evaltype','exact') title('Pressure') subplot(3,1,3) postplot(fea,'surfexpr','vx-uy','evaltype','exact','isoexpr',s_velm,'isolev',30) title('Vorticity') end % Error checking. vort = evalexpr('vx-uy',[0.53;0.564],fea); out.aerr = -2.068-vort; out.err = abs(out.aerr)/2.068; out.pass = out.err < opt.tol; if ( nargout==0 ) clear fea out end