FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_NAVIERSTOKES3 2D Example for incompressible stationary flow around a cylinder.
[1] John V, Matthies G. Higher-order finite element discretizations in a benchmark problem for incompressible flows. International Journal for Numerical Methods in Fluids 2001.
[2] Nabh G. On higher order methods for the stationary incompressible Navier-Stokes equations. PhD Thesis, Universitaet Heidelberg, 1998.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- rho scalar {1} Density miu scalar {0.001} Molecular/dynamic viscosity umax scalar {0.3} Maximum magnitude of inlet velocity igrid scalar {2} Grid type: >0 regular (igrid refinements) <0 unstruc. grid (with hmax=|igrid|) sf_u string {sflag1} Shape function for velocity sf_p string {sflag1} Shape function for pressure iphys scalar 0/{1} Use physics mode to define problem (=1) solver string {} Solver selection default, openfoam, su2, fenics iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'rho', 1; 'miu', 0.001; 'umax', 0.3; 'igrid', 2; 'sf_u', 'sflag1'; 'sf_p', 'sflag1'; 'iphys', 1; 'solver', ''; 'iplot', 1; 'tol', [0.05 0.35 0.1]; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Model parameters. rho = opt.rho; % Density. miu = opt.miu; % Molecular/dynamic viscosity. umax = opt.umax; % Maximum magnitude of inlet velocity. umean = 2/3*umax; % Mean inlet velocity. % Geometry and grid parameters. h = 0.41; % Height of rectangular domain. l = 2.2; % Length of rectangular domain. xc = 0.2; % x-coordinate of cylinder center. yc = 0.2; % y-coordinate of cylinder center. diam = 0.1; % Diameter of cylinder. % Discretization parameters. sf_u = opt.sf_u; % FEM shape function type for velocity. sf_p = opt.sf_p; % FEM shape function type for pressure. % Grid generation. fea.sdim = { 'x' 'y' }; if( opt.igrid>=1 ) fea.grid = cylbenchgrid( opt.igrid ); fea.grid.s(:) = 1; else gobj1 = gobj_rectangle( 0, 2.2, 0, 0.41, 'R1' ); gobj2 = gobj_circle( [0.2 0.2], 0.05, 'C1' ); fea.geom.objects = { gobj1 gobj2 }; fea = geom_apply_formula( fea, 'R1-C1' ); fea.grid = gridgen( fea, 'hmax', abs(opt.igrid), 'fid', fid ); end if( opt.iphys==1 && strcmp(opt.solver,'fenics') && size(fea.grid.c,1)==4 ) warning( 'Converting quadrilateral mesh to triangular to support FEniCS.' ) fea.grid = quad2tri( fea.grid ); end n_bdr = max(fea.grid.b(3,:)); % Number of boundaries. % Boundary conditions. dtol = sqrt(eps)*1e3; i_inflow = findbdr( fea, ['x<=',num2str(dtol)] ); % Inflow boundary number. i_outflow = findbdr( fea, ['x>=',num2str(l-dtol)] ); % Outflow boundary number. s_inflow = ['4*',num2str(umax),'*(y*(',num2str(h),'-y))/',num2str(h),'^2']; % Definition of inflow profile. i_cyl = findbdr( fea, ['sqrt((x-',num2str(xc),').^2+(y-',num2str(yc),').^2)<=(',num2str(diam/2+dtol),')'] ); % Cylinder boundary number. % Problem definition. if ( opt.iphys==1 ) fea = addphys(fea,@navierstokes); % Add Navier-Stokes equations physics mode. fea.phys.ns.eqn.coef{1,end} = { rho }; fea.phys.ns.eqn.coef{2,end} = { miu }; fea.phys.ns.sfun = { sf_u sf_u sf_p }; % Set shape functions. fea.phys.ns.bdr.sel(i_inflow) = 2; fea.phys.ns.bdr.sel(i_outflow) = 4; fea.phys.ns.bdr.coef{2,end}{1,i_inflow} = s_inflow; % Set inflow profile. fea = parsephys(fea); % Check and parse physics modes. else fea.dvar = { 'u' 'v' 'p' }; % Dependent variable name. fea.sfun = { sf_u sf_u sf_p }; % Shape function. % Define equation system. cvelx = [num2str(rho),'*',fea.dvar{1}]; % Convection velocity in x-direction. cvely = [num2str(rho),'*',fea.dvar{2}]; % Convection velocity in y-direction. fea.eqn.a.form = { [2 3 2 3;2 3 1 1] [2;3] [1;2]; [3;2] [2 3 2 3;2 3 1 1] [1;3]; [2;1] [3;1] [] }; fea.eqn.a.coef = { {2*miu miu cvelx cvely} miu -1; miu {miu 2*miu cvelx cvely} -1; 1 1 [] }; fea.eqn.f.form = { 1 1 1 }; fea.eqn.f.coef = { 0 0 0 }; % Define boundary conditions. fea.bdr.d = cell(3,n_bdr); [fea.bdr.d{1:2,:}] = deal( 0); fea.bdr.d{1,i_inflow} = s_inflow; [fea.bdr.d{:,i_outflow }] = deal([]); fea.bdr.n = cell(3,n_bdr); end % Parse and solve problem. fea = parseprob(fea); % Check and parse problem struct. if( opt.iphys==1 && strcmp(opt.solver,'openfoam') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = openfoam( fea, 'fid', fid, 'logfid', logfid ); fid = logfid; elseif( opt.iphys==1 && strcmp(opt.solver,'su2') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = su2( fea, 'fid', fid, 'logfid', logfid ); fid = logfid; elseif( opt.iphys==1 && strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', fid ); else jac.form = {[1;1] [1;1] [];[1;1] [1;1] []; [] [] []}; jac.coef = {[num2str(rho),'*ux'] [num2str(rho),'*uy'] []; [num2str(rho),'*vx'] [num2str(rho),'*vy'] []; [] [] []}; fea.sol.u = solvestat( fea, 'fid', fid, 'nsolve', 2, 'jac', jac, 'nlrlx', '(1+(it>2))/2' ); % Call to stationary solver. end % Postprocessing. s_velm = 'sqrt(u^2+v^2)'; if ( opt.iplot>0 ) figure subplot(2,1,1) postplot( fea, 'surfexpr', s_velm ) title( 'Velocity field' ) subplot(2,1,2) postplot( fea, 'surfexpr', 'p' ) title( 'Pressure' ) end % Calculate benchmark quantities (line integration method). s_tfx = ['nx*p+',num2str(miu),'*(-2*nx*ux-ny*(uy+vx))']; s_tfy = ['ny*p+',num2str(miu),'*(-nx*(vx+uy)-2*ny*vy)']; s_cd = ['2*(',s_tfx,')/(',num2str(rho),'*',num2str(umean),'^2*',num2str(diam),')']; s_cl = ['2*(',s_tfy,')/(',num2str(rho),'*',num2str(umean),'^2*',num2str(diam),')']; i_cub = 10; c_d1 = intbdr(s_cd,fea,i_cyl,i_cub); c_l1 = intbdr(s_cl,fea,i_cyl,i_cub); dp = evalexpr('p',[0.15 0.25;0.2 0.2],fea); % Calculate benchmark quantities (volume integration method). bdrm = fea.bdr.bdrm{1}; ind_b = []; ind_bm = []; for ii=i_cyl ind_b = [ind_b find(fea.grid.b(3,:)==ii)]; ind_bm = [ind_bm find(bdrm(3,:)==ii)]; end ind_c = fea.grid.b(1,ind_b); ind_gdof = bdrm(4,ind_bm); % Create field 'a' with values one on the cylinder and zero everywhere else. fea.dvar = [ fea.dvar, {'a'} ]; fea.sfun = [ fea.sfun, fea.sfun(1) ]; fea = parseprob(fea); n_dof = max(fea.eqn.dofm{1}(:)); u_a = zeros(n_dof,1); u_a(ind_gdof) = 1; fea.sol.u= [fea.sol.u;u_a]; fea.eqn = struct; fea.bdr = struct; fea = parseprob(fea); s_tfx = ['ax*p+',num2str(miu),'*(-2*ax*ux-ay*(uy+vx))-(u*ux+v*uy)*a']; s_tfy = ['ay*p+',num2str(miu),'*(-ax*(vx+uy)-2*ay*vy)-(u*vx+v*vy)*a']; s_cd = ['2*(',s_tfx,')/(',num2str(rho),'*',num2str(umean),'^2*',num2str(diam),')']; s_cl = ['2*(',s_tfy,')/(',num2str(rho),'*',num2str(umean),'^2*',num2str(diam),')']; c_d2 = intsubd(s_cd,fea,[],[],3); c_l2 = intsubd(s_cl,fea,[],[],3); if( ~isempty(fid) ) fprintf(fid,'\n\nBenchmark quantities:\n\n') fprintf(fid,'Drag coefficient, cd = %6f (l), %6f (v) (Ref: 5.579535)\n',c_d1,c_d2) fprintf(fid,'Lift coefficient, cl = %6f (l), %6f (v) (Ref: 0.010619)\n',c_l1,c_l2) fprintf(fid,'Pressure, dp = %6f (Ref: 0.117520)\n',dp(1)-dp(2)) end % Error checking. out.cd = [c_d1 c_d2]; out.cl = [c_l1 c_l2]; out.dp = dp(1)-dp(2); out.err = [abs(out.cd-5.579535)/5.579535; abs(out.cl-0.010619)/0.010619; abs(dp(1)-dp(2)-0.117520)/0.117520 0]; out.pass = (out.err(1,2)<opt.tol(1))&&(out.err(2,2)<opt.tol(2))&&(out.err(3,1)<opt.tol(3)); if ( nargout==0 ) clear fea out end %