FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_PIEZOELECTRIC1 Piezoelectric bending of a beam example.
[ FEA, OUT ] = EX_PIEZOELECTRIC1( VARARGIN ) Example for piezoelectric bending of a beam.
[1] V. Pierfort, Finite Element Modeling of Piezoelectric Active Structures, ULB, Faculty of Applied Sciences, 2000.
[2] W-S. Hwang, H.C. Park, Finite Element Modeling of Piezoelectric Sensors and Actuators, AIAA Journal, Vol. 31, No. 5, May 1993.
[3] C-I. Tseng, Electromechanical Dynamics of a Coupled Piezo-electric/Mechanical System Applied to Vibration Control and Distributed Sensing, Univ. of Kentucky, Lexington, July 1989.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- l scalar {0.12} Length of beam h scalar {2e-3} Height (thickness) of beam delV scalar {200} Potential difference igrid scalar 1/{0} Cell type (0=quadrilaterals, 1=triangles) hmax scalar {20} Cell resolution sfund string {sflag1} Shape function for displacements sfunp string {sflag1} Shape function for potential iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'l', 0.12; ... 'h', 2e-3; ... 'delV', 100; ... 'igrid', 0; ... 'hmax', 20; ... 'sfund', 'sflag2'; ... 'sfunp', 'sflag1'; ... 'iplot', 1; ... 'fid', 1 }; [got,opt] = parseopt( cOptDef, varargin{:} ); fid = opt.fid; i_impl = 1; % Geometry definition. fea.sdim = { 'x' 'y' }; % Names of space coordinates. gobj1 = gobj_rectangle( 0, opt.l, 0, opt.h/2, 'R1' ); gobj2 = gobj_rectangle( 0, opt.l, -opt.h/2, 0, 'R2' ); fea.geom.objects = { gobj1 gobj2 }; % Grid generation. switch opt.igrid case -1 fea.grid = rectgrid( opt.hmax, opt.hmax, [ 0 opt.l; -opt.h/2 opt.h/2] ); fea.grid = quad2tri( fea.grid ); case 0 fea.grid = rectgrid( opt.hmax, opt.hmax, [ 0 opt.l; -opt.h/2 opt.h/2] ); fea.grid.s( selcells( fea, 'y<=0' ) ) = 2; case 1 fea.grid = gridgen( fea, 'hmax', opt.h/(opt.hmax/4.6), 'fid', fid ); fea.grid.s(:) = 1; end ind_c = selcells( fea, 'y<=0' ); fea.grid.s( ind_c ) = 2; ix = ismember( fea.grid.b(1,:), ind_c ); fea.grid.b(3,ix) = fea.grid.b(3,ix) + 4; [~,~,ib] = unique(fea.grid.b(3,:)); fea.grid.b(3,:) = ib; % Equation coefficients. Emod = 2e9; % Modulus of elasticity nu = 0.29; % Poissons ratio Gmod = 0.775e9; % Shear modulus d31 = 0.22e-10; % Piezoelectric sn coefficient d33 = -0.3e-10; % Piezoelectric sn coefficient prel = 12; % Relative electrical permittivity pvac = 0.885418781762e-11; % Electrical permittivity of vacuum % Constitutive relations. constrel = [ Emod/(1-nu^2) nu*Emod/(1-nu^2) 0 ; nu*Emod/(1-nu^2) Emod/(1-nu^2) 0 ; 0 0 Gmod ]; piezoel_st = [ 0 d31 ; 0 d33 ; 0 0 ]; piezoel_sn = constrel*piezoel_st; dielmat_st = [ prel 0 ; 0 prel ]*pvac ; dielmat_sn = [ dielmat_st - piezoel_st'*piezoel_sn ]; % Populate coefficient matrices (negative sign due to fem partial integration). c{1,1} = { constrel(1,1) constrel(1,3) ; constrel(1,3) constrel(3,3) }; c{1,2} = { constrel(1,3) constrel(1,2) ; constrel(3,3) constrel(2,3) }; c{2,1} = c{1,2}'; c{2,2} = { constrel(3,3) constrel(1,3) ; constrel(1,3) constrel(2,2) }; c{1,3} = { piezoel_sn(1,1) piezoel_sn(1,2) ; piezoel_sn(3,1) piezoel_sn(3,2) }; if( i_impl ) for i=1:4 c{1,3}{i} = [num2str(c{1,3}{i}),'*(2*(y<0)-1)']; end else for i=1:4 fea.expr{i,1} = ['piezoel_sn1',num2str(i)]; fea.expr{i,2} = { -c{1,3}{i} c{1,3}{i} }; c{1,3}{i} = ['piezoel_sn1',num2str(i)]; end end c{3,1} = c{1,3}'; c{2,3} = { piezoel_sn(3,1) piezoel_sn(3,2); piezoel_sn(2,1) piezoel_sn(2,2) }; if( i_impl ) for i=1:4 c{2,3}{i} = [num2str(c{2,3}{i}),'*(2*(y<0)-1)']; end else for i=1:4 fea.expr{i+4,1} = ['piezoel_sn2',num2str(i)]; fea.expr{i+4,2} = { -c{2,3}{i} c{2,3}{i} }; c{2,3}{i} = ['piezoel_sn2',num2str(i)]; end end c{3,2} = c{2,3}'; c{3,3} = { dielmat_sn(1,1) dielmat_sn(2,1) ; dielmat_sn(2,1) dielmat_sn(2,2) }; % Dependent variable names. fea.dvar = { 'u' 'v' 'V' }; n_dvar = length(fea.dvar); % Finite element shape functions. fea.sfun = { opt.sfund opt.sfund opt.sfunp }; % Define equations. bilinear_form = [ 2 2 3 3 ; 2 3 2 3 ]; for i=1:n_dvar for j=1:n_dvar fea.eqn.a.form{i,j} = bilinear_form; fea.eqn.a.coef{i,j} = c{i,j}(:)'; end end % Source terms (set to zero). fea.eqn.f.form = { 1 1 1 }; fea.eqn.f.coef = { 0 0 0 }; % Boundary conditions. n_bdr = max(fea.grid.b(3,:)); % Number of boundaries. fea.bdr.d = cell(n_dvar,n_bdr); fea.bdr.n = cell(n_dvar,n_bdr); i_top = findbdr( fea, ['y>=',num2str(opt.h/2-sqrt(eps))] ); i_bottom = findbdr( fea, ['y<=',num2str(-opt.h/2+sqrt(eps))] ); i_left = findbdr( fea, ['x<=',num2str(sqrt(eps))] ); [fea.bdr.d{3,i_top}] = deal( opt.delV ); % Set potential to dV on top boundary. [fea.bdr.d{3,i_bottom}] = deal( 0 ); % Set potential to 0V on bottom boundary. [fea.bdr.d{1:2,i_left}] = deal( 0 ); % Set displacements to 0 on left boundary. % Check and parse problem struct. fea = parseprob( fea ); % Call to stationary solver. fea.sol.u = solvestat( fea, 'fid', fid ); % Postprocessing. if( opt.iplot ) YSCALE = 3; axlim = [0, opt.l, -YSCALE*opt.h/2, YSCALE*opt.h/2]; DSCALE = 20; subplot(2,2,1) postplot( fea, 'surfexpr', 'u', 'isoexpr', 'u', 'setaxes', 'off' ) axis(axlim); title('x-displacement') subplot(2,2,2) postplot( fea, 'surfexpr', 'v', 'isoexpr', 'v', 'setaxes', 'off' ) axis(axlim); title('y-displacement') subplot(2,2,3) postplot( fea, 'surfexpr', 'V', 'isoexpr', 'V', 'setaxes', 'off' ) axis(axlim); title('Electric potential') subplot(2,2,4) plotsubd( fea, 'labels', 'off', 'setaxes', 'off' ) axis(axlim); title(['Displacement plot (at ',num2str(DSCALE),' times scale)']) ind1 = sub2ind( size(fea.grid.c), fea.grid.b(2,:), fea.grid.b(1,:) ); p1b = fea.grid.p( :, fea.grid.c(ind1) ); ind2 = sub2ind( size(fea.grid.c), mod(fea.grid.b(2,:),size(fea.grid.c,1))+1, fea.grid.b(1,:) ); p2b = fea.grid.p( :, fea.grid.c(ind2) ); up1 = DSCALE*evalexpr( 'u', p1b, fea ); vp1 = DSCALE*evalexpr( 'v', p1b, fea ); up2 = DSCALE*evalexpr( 'u', p2b, fea ); vp2 = DSCALE*evalexpr( 'v', p2b, fea ); hold on for i=1:size(p1b,2) plot( [p1b(1,i)+up1(i) p2b(1,i)+up2(i)], [p1b(2,i)+vp1(i) p2b(2,i)+vp2(i)], '-b', 'linewidth', 2 ) end set( gca, 'ytick', [] ) end % Error checking. ind_dof_v = fea.eqn.dofm{2}(:) + fea.eqn.ndof(1); out.v_max = max(abs( fea.sol.u(ind_dof_v) )); v_max_ref = abs(-3/2*d31*opt.delV*(opt.l/opt.h)^2); out.err = abs(v_max_ref - out.v_max)/v_max_ref; out.pass = out.err <= 0.1; if ( nargout==0 ) clear fea out end