FEATool Multiphysics
v1.17.1
Finite Element Analysis Toolbox
|
SF_QUAD_Q1 Bilinear conforming shape function for quadrilaterals (Q1).
[ VBASE, NLDOF, XLDOF, SFUN ] = SF_QUAD_Q1( I_EVAL, N_SDIM, N_VERT, I_DOF, XI, AINVJAC, VBASE ) Evaluates conforming bilinear Q1 shape functions on quadrilaterals with values defined in the nodes. XI is [-1..1]^2 reference coordinates.
Input Value/[Size] Description ----------------------------------------------------------------------------------- i_eval scalar: 1 Evaluate function values >1 Evaluate values of derivatives n_sdim scalar: 2 Number of space dimensions n_vert scalar: 4 Number of vertices per cell i_dof scalar: 1-n_ldof Local basis function to evaluate xi [n_sdim] Local coordinates of evaluation point aInvJac [n,n_sdim*n_sdim] Inverse of transformation Jacobian vBase [n] Preallocated output vector . Output Value/[Size] Description ----------------------------------------------------------------------------------- vBase [n] Evaluated function values nLDof [4] Number of local degrees of freedom on vertices, edges, faces, and cell interiors xLDof [n_sdim,n_ldof] Local coordinates of local dofs sfun string Function name of called shape function
nLDof = [4 0 0 0]; xLDof = [-1 1 1 -1; ... -1 -1 1 1]; sfun = 'sf_quad_Q1'; switch i_eval % Evaluation type flag. case 1 % Evaluation of function values. switch i_dof % Basis function to evaluate. case 1 vBase = (1-xi(1))*(1-xi(2))/4; case 2 vBase = (1+xi(1))*(1-xi(2))/4; case 3 vBase = (1+xi(1))*(1+xi(2))/4; case 4 vBase = (1-xi(1))*(1+xi(2))/4; end case {2,3} % Evaluation of first order derivatives. switch i_dof % Basis function to evaluate. case 1 dNdxi1 = -(1-xi(2))/4; dNdxi2 = -(1-xi(1))/4; case 2 dNdxi1 = (1-xi(2))/4; dNdxi2 = -(1+xi(1))/4; case 3 dNdxi1 = (1+xi(2))/4; dNdxi2 = (1+xi(1))/4; case 4 dNdxi1 = -(1+xi(2))/4; dNdxi2 = (1-xi(1))/4; end if ( i_eval==2 ) % x-derivative. vBase = aInvJac(:,1)*dNdxi1+aInvJac(:,2)*dNdxi2; elseif ( i_eval==3 ) % y-derivative. vBase = aInvJac(:,3)*dNdxi1+aInvJac(:,4)*dNdxi2; end case {22,23,32,33} % Evaluation of second order derivatives. if( any(abs([aInvJac(:,2);aInvJac(:,3)])>eps*1e2) ) warning('sf_quad_Q1: 2nd derivatives for non-rectangular cells shapes not supported.') end switch i_dof % Basis function to evaluate. case {1,3} d2Ndxi12 = 0; d2Ndxi1dxi2 = 1/4; d2Ndxi2dxi1 = 1/4; d2Ndxi22 = 0; case {2,4} d2Ndxi12 = 0; d2Ndxi1dxi2 = -1/4; d2Ndxi2dxi1 = -1/4; d2Ndxi22 = 0; end if ( i_eval==22 ) % xx-derivative. vBase = aInvJac(:,1).*( aInvJac(:,1)*d2Ndxi12 + aInvJac(:,2)*d2Ndxi1dxi2 ) + ... aInvJac(:,2).*( aInvJac(:,1)*d2Ndxi2dxi1 + aInvJac(:,2)*d2Ndxi22 ); elseif ( i_eval==23 ) % xy-derivative. vBase = aInvJac(:,3).*( aInvJac(:,1)*d2Ndxi12 + aInvJac(:,2)*d2Ndxi1dxi2 ) + ... aInvJac(:,4).*( aInvJac(:,1)*d2Ndxi2dxi1 + aInvJac(:,2)*d2Ndxi22 ); elseif ( i_eval==32 ) % yx-derivative. vBase = aInvJac(:,1).*( aInvJac(:,3)*d2Ndxi12 + aInvJac(:,4)*d2Ndxi1dxi2 ) + ... aInvJac(:,2).*( aInvJac(:,3)*d2Ndxi2dxi1 + aInvJac(:,4)*d2Ndxi22 ); elseif ( i_eval==33 ) % yy-derivative. vBase = aInvJac(:,3).*( aInvJac(:,3)*d2Ndxi12 + aInvJac(:,4)*d2Ndxi1dxi2 ) + ... aInvJac(:,4).*( aInvJac(:,3)*d2Ndxi2dxi1 + aInvJac(:,4)*d2Ndxi22 ); end otherwise vBase = 0; end