FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_AXISTRESSSTRAIN1 Example for hollow cylider axisymmetric stress-strain.
[ FEA, OUT ] = EX_AXISTRESSSTRAIN1( VARARGIN ) Example to calculate displacements and stresses in a hollow cylinder in axisymmetric/cylindrical coordinates.
Ref. 4.1.9 Long (generalized plane strain) cylinder subjected to internal and external pressure. [1] Applied Mechanics of Solids, Allan F. Bower, 2012 (http://solidmechanics.org/).
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- a scalar {1.5} Cylinder inner radius b scalar {2} Cylinder outer radius l scalar {3} Cylinder length pa scalar {5e3} Inner load force pb scalar {20e4} Outer load force E scalar {200e9} Modulus of elasticity nu scalar {0.3} Poissons ratio igrid scalar 0/{1} Cell type (0=quadrilaterals, 1=triangles) hmax scalar {0.1} Max grid cell size sfun string {sflag2} Shape function for displacements iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'a', 0.9; 'b', 2; 'l', 3; 'pa', 5e3; 'pb', 20e4; 'E', 200e9; 'nu', 0.3; 'igrid', 0; 'hmax', 0.01; 'sfun', 'sflag2'; 'iplot', 1; 'tol', 5e-2; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Geometry and grid. a = opt.a; b = opt.b; l = opt.l; fea.geom.objects = { gobj_rectangle( a, b, 0, l, 'R1' ) }; if ( opt.igrid==1 ) fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', fid ); else fea.grid = rectgrid( ceil((b-a)/opt.hmax), ceil(l/opt.hmax), [a b;0 l] ); if( opt.igrid<0 ) fea.grid = quad2tri( fea.grid ); end end n_bdr = max(fea.grid.b(3,:)); % Number of boundaries. % Axisymmetric stress-strain equation definitions. fea.sdim = { 'r', 'z' }; fea = addphys( fea, @axistressstrain ); fea.phys.css.eqn.coef{1,end} = { opt.nu }; fea.phys.css.eqn.coef{2,end} = { opt.E }; fea.phys.css.sfun = { opt.sfun opt.sfun }; % Set shape functions. % Boundary conditions. bctype = mat2cell( zeros(2,n_bdr), [1 1], ones(1,n_bdr) ); [bctype{2,:}] = deal( 1 ); fea.phys.css.bdr.coef{1,5} = bctype; bccoef = mat2cell( zeros(2,n_bdr), [1 1], ones(1,n_bdr) ); bccoef{1,2} = opt.pb*b; bccoef{1,4} = opt.pa*a; fea.phys.css.bdr.coef{1,end} = bccoef; % Solve. fea = parsephys( fea ); fea = parseprob( fea ); fea.sol.u = solvestat( fea, 'icub', 1+str2num(strrep(opt.sfun,'sflag','')), 'fid', fid ); % Postprocessing. n = 20; r = linspace(a,b,n); z = l/2*ones(1,n); pa = opt.pa; pb = -opt.pb; E = opt.E; nu = opt.nu; % 4.1.9 http://solidmechanics.org/Text/Chapter4_1/Chapter4_1.php#Sect4_1_9 u_ref = (1+nu)*a^2*b^2/E/(b^2-a^2)*( (pa-pb)./r' + (1-2*nu)*(pa*a^2 - pb*b^2)/a^2/b^2*r' ); sr_ref = (pa*a^2-pb*b^2)/(b^2-a^2) - a^2*b^2/(b^2-a^2)./(r').^2*(pa-pb); st_ref = (pa*a^2-pb*b^2)/(b^2-a^2) + a^2*b^2/(b^2-a^2)./(r').^2*(pa-pb); sz_ref = 2*nu*(pa*a^2-pb*b^2)/(b^2-a^2); u = evalexpr( fea.phys.css.eqn.vars{3,2}, [r;z], fea ); w = evalexpr( fea.phys.css.eqn.vars{4,2}, [r;z], fea ); sr = evalexpr( fea.phys.css.eqn.vars{5,2}, [r;z], fea ); st = evalexpr( fea.phys.css.eqn.vars{6,2}, [r;z], fea ); sz = evalexpr( fea.phys.css.eqn.vars{7,2}, [r;z], fea ); if( opt.iplot>0 ) subplot(1,2,1) postplot( fea, 'surfexpr', fea.phys.css.eqn.vars{3,2} ) title('r-displacement') subplot(1,2,2), hold on plot(u_ref,r,'r-') plot(u,r,'b.') legend('exact solution','computed solution') xlabel('r') grid on end % Error checking. out.erru = norm( u_ref - u )/norm( u_ref ); out.errw = norm( w ); out.errsr = norm( sr_ref - sr )/norm( sr_ref ); out.errst = norm( st_ref - st )/norm( st_ref ); out.errsz = norm( sz_ref - sz )/norm( sz_ref ); out.err = [ out.erru, out.errw, out.errsr, out.errst, out.errsz ]; out.pass = all(out.err < opt.tol); if( nargout==0 ) clear fea out end