FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_AXISTRESSSTRAIN2 Example for a pressurized hollow sphere axisymmetric stress-strain.
[ FEA, OUT ] = EX_AXISTRESSSTRAIN2( VARARGIN ) Example to calculate displacements and stresses in a pressurized hollow sphere in axisymmetric/cylindrical coordinates.
Ref. 4.1.4 Pressurized hollow sphere. [1] Applied Mechanics of Solids, Allan F. Bower, 2012 (http://solidmechanics.org/).
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- a scalar {1} Cylinder inner radius b scalar {2} Cylinder outer radius p scalar {20e4} Load force E scalar {200e9} Modulus of elasticity nu scalar {0.3} Poissons ratio igrid scalar 0/{<0} Cell type (0=quadrilaterals, <0=triangles) sfun string {sflag2} Shape function for displacements iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'a', 1; 'b', 2; 'p', 20e4; 'E', 200e9; 'nu', 0.3; 'igrid', 0; 'sfun', 'sflag2'; 'iplot', 1; 'tol', 5e-3; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Geometry and grid. a = opt.a; b = opt.b; if ( opt.igrid==1 ) error('ex_axistressstrain2: unstructured grid not supported.') else fea.grid = ringgrid( 12, 72, a, b ); fea.grid = delcells( fea.grid, selcells( fea.grid, '(x<=eps) | (y<=eps)') ); if( opt.igrid<0 ) fea.grid = quad2tri( fea.grid ); end end n_bdr = max(fea.grid.b(3,:)); % Number of boundaries. % Axisymmetric stress-strain equation definitions. fea.sdim = { 'r', 'z' }; fea = addphys( fea, @axistressstrain ); fea.phys.css.eqn.coef{1,end} = { opt.nu }; fea.phys.css.eqn.coef{2,end} = { opt.E }; fea.phys.css.sfun = { opt.sfun opt.sfun }; % Set shape functions. % Boundary conditions. bctype = mat2cell( zeros(2,n_bdr), [1 1], ones(1,n_bdr) ); bctype{1,4} = 1; bctype{2,3} = 1; fea.phys.css.bdr.coef{1,5} = bctype; bccoef = mat2cell( zeros(2,n_bdr), [1 1], ones(1,n_bdr) ); bccoef{1,1} = ['-r*nr*',num2str(opt.p),]; bccoef{2,1} = ['-r*nz*',num2str(opt.p),]; fea.phys.css.bdr.coef{1,end} = bccoef; % Solve. fea = parsephys( fea ); fea = parseprob( fea ); fea.sol.u = solvestat( fea, 'icub', 1+str2num(strrep(opt.sfun,'sflag','')), 'fid', fid ); % Postprocessing. n = 20; r = linspace(a,b,n); z = zeros(1,n); u_ref = 1./(2*opt.E*(b^3-a^3)*r'.^2) .* (2*(opt.p*a^3)*(1-2*opt.nu)*r'.^3+opt.p*(1+opt.nu)*b^3*a^3); u = evalexpr( 'r*u', [r;z], fea ); if( opt.iplot>0 ) subplot(1,2,1) postplot( fea, 'surfexpr', 'sqrt((r*u)^2+w^2)', 'arrowexpr', {'r*u' 'w'} ) title('computed displacement') subplot(1,2,2), hold on plot(u_ref,r,'r-') plot(u,r,'b.') title( 'radial displacement') legend('exact solution','computed solution') xlabel('r') grid on end % Error checking. out.err = norm( u_ref - u )/norm( u_ref ); out.pass = out.err < opt.tol; if( nargout==0 ) clear fea out end