FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_BRINKMAN1 Coupled Navier-Stokes and Brinkman equations model.
[ FEA, OUT ] = EX_BRINKMAN1( VARARGIN ) Example using the Navier-Stokes equations coupled with the Brinkman equations for porous media flow.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {4e-4} Grid size sfun string {sflag2} Shape function for pressure iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'hmax', 4e-4; 'iplot', 1; 'tol', 0.25; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Model constants. rho = 1.23; % Density. miu = 2.1e-4; % Viscosity. kap = 3.2e-7; % Permeability. % Geometry and grid generation. fea.sdim = { 'x' 'y' }; fea.geom.objects = { gobj_rectangle(-2e-3,0,-8e-3,8e-3,'R1') ... gobj_polygon([0 -6e-3;2e-3 -5e-3;2e-3 4e-3;0 6e-3],'P1') ... }; fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', opt.fid ); fea.grid = gridbdrx( fea.grid ); % Reconstruct internal boundaries. % Problem definition. % Navier-Stokes equations. fea = addphys( fea, @navierstokes ); % Add Navier-Stokes equations physics mode. fea.phys.ns.eqn.coef{1,end} = rho; fea.phys.ns.eqn.coef{2,end} = miu; fea.phys.ns.bdr.sel(1) = 2; fea.phys.ns.bdr.coef{2,end}{2,1} = 2e-2; % Set inflow velocity. fea.phys.ns.bdr.sel(4) = 4; fea.phys.ns.bdr.sel(9) = -2; fea.phys.ns.bdr.coefi{2,end}{1,9} = 'u2'; % Brinkman velocity from shared boundary. fea.phys.ns.bdr.coefi{2,end}{2,9} = 'v2'; % Brinkman equations. fea = addphys( fea, @brinkmaneqns ); % Add Brinkman equations physics mode. fea.phys.br.eqn.coef{1,end} = rho; fea.phys.br.eqn.coef{2,end} = miu; fea.phys.br.eqn.coef{3,end} = kap; fea.phys.br.bdr.sel(9) = -2; fea.phys.br.bdr.coefi{2,end}{1,9} = 'u'; % NS velocity from shared boundary. fea.phys.br.bdr.coefi{2,end}{2,9} = 'v'; % Parse and solve problem. fea = parsephys( fea ); fea = parseprob( fea ); fea.sol.u = solvestat( fea, 'solcomp', {{1 0} {1 0} {1 0} {0 1} {0 1} {0 1} }, 'fid', opt.fid ); % Postprocessing. x = linspace( -1e-3, 1e-3, 100 ); y = zeros(size(x)); u_ns = evalexpr( 'sqrt(u^2+v^2)', [x;y], fea ); u_br = evalexpr( 'sqrt(u2^2+v2^2)', [x;y], fea ); if( opt.iplot ) subplot(1,2,1) postplot( fea, 'surfexpr', 'sqrt(u^2+v^2)', 'arrowexpr', {'u' 'v'} ) postplot( fea, 'surfexpr', 'sqrt(u2^2+v2^2)', 'arrowexpr', {'u2' 'v2'} ) subplot(1,2,2) plot( x, u_ns ), hold on plot( x, u_br ), hold on end % Error checking. out.err = [ abs(max( u_ns ) - 0.0175)/0.0175, ... abs(mean( u_br(~isnan(u_br)) ) - 9e-3)/9e-3]; out.pass = all( out.err < opt.tol ); if ( nargout==0 ) clear fea out end