|
FEATool Multiphysics
v1.17.5
Finite Element Analysis Toolbox
|
EX_COMPRESSIBLEEULER2 2D Steady oblique shock wave.
[ FEA, OUT ] = EX_COMPRESSIBLEEULER2( VARARGIN ) Sets up and solves a steady 2D compressible Euler equation for a Ma=2 10 degree oblique shock wave and compares with the analytical solution.
[1] H. W. Liepmann, A. Roshko, Elements of Gas Dynamics, Courier Corporation, 2013.
Accepts the following property/value pairs.
Input Value/{Default} Description
-----------------------------------------------------------------------------------
hmax scalar {0.05} Max grid cell size
sfun string {sflag1} Shape function
solver string openfoam/su2/{} Use OpenFOAM, SU2, or default solver
iplot scalar 0/{1} Plot solution and error (=1)
.
Output Value/(Size) Description
-----------------------------------------------------------------------------------
fea struct Problem definition struct
out struct Output struct
cOptDef = { 'hmax', 0.05;
'sfun', 'sflag1';
'solver', '';
'iplot', 1;
'tol', 0.05;
'fid', 1 };
[got,opt] = parseopt(cOptDef,varargin{:});
fid = opt.fid;
fea.sdim = { 'x', 'y' };
fea.geom.objects = { gobj_rectangle() };
fea.grid = rectgrid(ceil(1/opt.hmax));
gamma = 7/5;
al = pi/18; % 10 degrees indicence angle.
Min = 2;
Ma = @(th) sqrt( 2/( sin(th+al)*cos(th+al)*( (gamma+1)*tan(th) - (gamma-1)*tan(th+al) ) ) ) - Min;
th = fzero(Ma,atan(29.3/180*pi)); % Shock angle.
rin = 1;
uin = cos(al);
vin = -sin(al);
pin = (sqrt(uin^2+vin^2)/Min)^2*rin/gamma;
Mout = 1/sin(th) * sqrt( (1+(gamma-1)/2*Min^2*sin(th+al)^2) / ...
(gamma*Min^2*sin(th+al)^2-(gamma-1)/2) );
rout = (gamma+1)*Min^2*sin(th+al)^2/( (gamma-1)*Min^2*sin(th+al)^2 + 2 );
pout = pin*(1 + 2*gamma/(gamma + 1)*( Min^2*sin(th+al)^2 - 1 ));
uout = Mout*sqrt(gamma*pout/rout);
rref = sprintf( '%g+(y<x*%g)*(%g-%g)', rin, atan(th), rout, rin );
uref = sprintf( '%g+(y<x*%g)*(%g-%g)', uin, atan(th), uout, uin );
vref = sprintf( '%g+(y<x*%g)*(%g-%g)', vin, atan(th), 0, vin );
pref = sprintf( '%g+(y<x*%g)*(%g-%g)', pin, atan(th), pout, pin );
fea = addphys(fea,@compressibleeuler);
fea.phys.ee.prop.artstab.id_coef = 2*fea.phys.ee.prop.artstab.id_coef;
fea.phys.ee.prop.artstab.sd_coef = 2*fea.phys.ee.prop.artstab.sd_coef;
init0 = { rin, uin, vin, pin };
fea.phys.ee.eqn.coef{5,end}{1} = rin;
fea.phys.ee.eqn.coef{6,end}{1} = uin;
fea.phys.ee.eqn.coef{7,end}{1} = vin;
fea.phys.ee.eqn.coef{8,end}{1} = pin;
fea.phys.ee.bdr.sel(2) = 2;
fea.phys.ee.bdr.sel(3:4) = 1;
fea.phys.ee.bdr.coef{1,end}{1,3} = rin;
fea.phys.ee.bdr.coef{1,end}{2,3} = uin;
fea.phys.ee.bdr.coef{1,end}{3,3} = vin;
fea.phys.ee.bdr.coef{1,end}{4,3} = pin;
fea.phys.ee.bdr.coef{1,end}{1,4} = rin;
fea.phys.ee.bdr.coef{1,end}{2,4} = uin;
fea.phys.ee.bdr.coef{1,end}{3,4} = vin;
fea.phys.ee.bdr.coef{1,end}{4,4} = pin;
fea = parsephys(fea);
fea = parseprob(fea);
if( strcmp(opt.solver,'openfoam') )
logfid = fid; if( ~got.fid ), fid = []; end
fea.sol.u = openfoam( fea, 'deltaT', 0.01, 'endTime', 10, 'nproc', 1, 'fid', fid, 'logfid', logfid );
fid = logfid;
elseif( strcmp(opt.solver,'su2') )
logfid = fid; if( ~got.fid ), fid = []; end
fea.sol.u = su2( fea, 'fid', fid, 'logfid', logfid );
fid = logfid;
else
fea.sol.u = solvestat( fea, 'init', init0, 'fid', fid );
end
% Postprocessing.
s_Ma = fea.phys.ee.eqn.vars{end-1,2};
if( opt.iplot>0 )
postplot( fea, 'surfexpr', s_Ma )
title(fea.phys.ee.eqn.vars{end-1,1})
end
% Error checking.
r = evalexprp( fea.dvar{1}, fea );
u = evalexprp( fea.dvar{2}, fea );
v = evalexprp( fea.dvar{3}, fea );
p = evalexprp( fea.dvar{4}, fea );
r_ref = evalexprp( rref, fea );
u_ref = evalexprp( uref, fea );
v_ref = evalexprp( vref, fea );
p_ref = evalexprp( pref, fea );
out.err = [ sum(abs(r_ref-r))/size(fea.grid.p,2), ...
sum(abs(u_ref-u))/size(fea.grid.p,2), ...
sum(abs(v_ref-v))/size(fea.grid.p,2), ...
sum(abs(p_ref-p))/size(fea.grid.p,2) ];
out.pass = all(out.err<opt.tol);
if( nargout==0 )
clear fea out
end