FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_COMPRESSIBLEEULER5 3D Compressible inviscid flow over a bump.
[ FEA, OUT ] = EX_COMPRESSIBLEEULER5( VARARGIN ) Sets up and solves a stationary 3D compressible Euler equation problem for supersonic flow over a cylindrical bump.
[1] Lynn J.F., van Leer B., Lee D. (1997) Multigrid solution of the euler equations with local preconditioning. In: Kutler P., Flores J., Chattot JJ. (eds) Fifteenth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol 490. Springer, Berlin, Heidelberg.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.05} Max grid cell size sfun string {sflag1} Shape function solver string openfoam/su2/{} Use OpenFOAM, SU2, or default solver iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'hmax', 0.08; 'sfun', 'sflag1'; 'solver', ''; 'iplot', 1; 'tol', 0.11; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; fea.sdim = { 'x', 'y', 'z' }; r = (0.5^2/0.042+0.042)/2; fea.geom.objects = { gobj_block(-1,4,0,0.5,0,2), gobj_cylinder([.5,0,0.042-r],r,.5,[0,1,0]) }; fea = geom_apply_formula(fea,'B1-C1'); fea.grid = gridgen(fea,'hmax',opt.hmax,'fid',fid); fea = addphys(fea,@compressibleeuler); Ma = 1.4; rho0 = 1; p0 = 1; u0 = Ma*sqrt(1.4*p0/rho0); v0 = 0; w0 = 0; init0 = {rho0, u0, v0, w0, p0}; fea.phys.ee.eqn.coef{6,end}{1} = rho0; fea.phys.ee.eqn.coef{7,end}{1} = u0; fea.phys.ee.eqn.coef{8,end}{1} = v0; fea.phys.ee.eqn.coef{9,end}{1} = w0; fea.phys.ee.eqn.coef{10,end}{1} = p0; i_in = findbdr( fea, 'x<=-1+sqrt(eps)' ); i_out = findbdr( fea, 'x>=4-sqrt(eps)' ); fea.phys.ee.bdr.sel(i_in) = 1; fea.phys.ee.bdr.sel(i_out) = 2; fea.phys.ee.bdr.coef{1,end}{1,i_in} = rho0; fea.phys.ee.bdr.coef{1,end}{2,i_in} = u0; fea.phys.ee.bdr.coef{1,end}{3,i_in} = v0; fea.phys.ee.bdr.coef{1,end}{4,i_in} = w0; fea.phys.ee.bdr.coef{1,end}{5,i_in} = p0; fea = parsephys(fea); fea = parseprob(fea); if( strcmp(opt.solver,'openfoam') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = openfoam( fea, 'deltaT', 0.01, 'endTime', 5, 'fid', fid, 'logfid', logfid ); fid = logfid; elseif( strcmp(opt.solver,'su2') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = su2( fea, 'upwind', 'jst', 'fid', fid, 'logfid', logfid, 'nproc', 1 ); fid = logfid; else fea.sol.u = solvestat( fea, 'init', init0, 'maxnit', 30, 'nlrlx', 1.0, 'fid', fid ); end % Postprocessing. s_Ma = fea.phys.ee.eqn.vars{end-1,2}; if( opt.iplot>0 ) postplot( fea, 'sliceexpr', s_Ma, 'slicex', [], 'slicey', 0.45, 'slicez', 0.05 ) title(fea.phys.ee.eqn.vars{end-1,1}) end % Error checking. [Ma_min,Ma_max] = minmaxsubd( s_Ma, fea ); out.err = [ abs(Ma_min-1.0)/1.0, ... abs(Ma_max-1.8)/1.8 ]; out.pass = all(out.err<opt.tol); if( nargout==0 ) clear fea out end