FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_CONVDIFF1 2D Convection and diffusion equation example on a rectangle.
[ FEA, OUT ] = EX_CONVDIFF1( VARARGIN ) Convection and diffusion equation on a rectangle with exact solution u_0+c1*eta+c2*(2*cd*xi+eta^2). Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- igrid scalar 1/{0} Cell type (0=quadrilaterals, 1=triangles) hmax scalar {1/40} Max grid cell size a scalar {1} Convection velocity in x-direction b scalar {2} Convection velocity in y-direction c1 scalar {1} Solution constant c2 scalar {0.8} Solution constant cd scalar {0.5} Diffusion coefficient sfun string {sflag1} Shape function iphys scalar 0/{1} Use physics mode to define problem (=1) or directly define fea.eqn/bdr fields (=0) iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'igrid', 0; ... 'hmax', 1/40; ... 'a', 1; ... 'b', 2; ... 'c1', 1; ... 'c2', 0.8; ... 'cd', 0.5; ... 'sfun', 'sflag1'; ... 'iphys', 1; ... 'iplot', 1; ... 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; xi = [num2str(opt.a),'*x+',num2str(opt.b),'*y']; eta = [num2str(opt.b),'*x-',num2str(opt.a),'*y']; refsol = [num2str(opt.c1),'*(',eta,')+',num2str(opt.c2),'*(2*',num2str(opt.cd),'*(',xi,')+(',eta,')^2)']; % Geometry definition. gobj = gobj_rectangle(); fea.geom.objects = { gobj }; % Grid generation. switch opt.igrid case -1 fea.grid = rectgrid(round(1/opt.hmax)); fea.grid = quad2tri(fea.grid); case 0 fea.grid = rectgrid(round(1/opt.hmax)); case 1 fea.grid = gridgen(fea,'hmax',opt.hmax,'fid',fid); end n_bdr = max(fea.grid.b(3,:)); % Number of boundaries. % Problem definition. fea.sdim = { 'x' 'y' }; % Coordinate names. if ( opt.iphys==1 ) fea = addphys(fea,@convectiondiffusion); % Add convection and diffusion physics mode. fea.phys.cd.sfun = { opt.sfun }; % Set shape function. fea.phys.cd.eqn.coef{2,4} = { opt.cd }; % Set diffusion coefficient. fea.phys.cd.eqn.coef{3,4} = { opt.a }; % Convection velocity in x-direction. fea.phys.cd.eqn.coef{4,4} = { opt.b }; % Convection velocity in y-direction. fea.phys.cd.bdr.sel = [1 1 1 1]; fea.phys.cd.bdr.coef{1,end} = repmat({refsol},1,n_bdr); % Set Dirichlet boundary coefficient to reference solution. fea = parsephys(fea); % Check and parse physics modes. else fea.dvar = { 'c' }; % Dependent variable name. fea.sfun = { opt.sfun }; % Shape function. % Define equation system. fea.eqn.a.form = { [2 3 2 3;2 3 1 1] }; % First row indicates test function space (2=x-derivative + 3=y-derivative), % second row indicates trial function space (2=x-derivative + 3=y-derivative). fea.eqn.a.coef = { [opt.cd opt.cd opt.a opt.b] }; % Coefficients used in assembling stiffness matrix. fea.eqn.f.form = { 1 }; % Test function space to evaluate in right hand side (1=function values). fea.eqn.f.coef = { 0 }; % Coefficient used in right hand side. % Define boundary conditions. fea.bdr.d = cell(1,n_bdr); [fea.bdr.d{:}] = deal(refsol); % Assign reference solution to all boundaries (Dirichlet). fea.bdr.n = cell(1,n_bdr); % No Neumann boundaries ('fea.bdr.n' empty). end % Parse and solve problem. fea = parseprob(fea); % Check and parse problem struct. fea.sol.u = solvestat(fea,'fid',fid); % Call to stationary solver. % Postprocessing. s_err = ['abs(',refsol,'-c)']; if ( opt.iplot>0 ) figure subplot(2,1,1) postplot(fea,'surfexpr','c','isoexpr','c') title('Solution c') subplot(2,1,2) postplot(fea,'surfexpr',s_err) title('Error') end % Error checking. if ( size(fea.grid.c,1)==4 ) xi = [0;0]; else xi = [1/3;1/3;1/3]; end err = evalexpr0(s_err,xi,1,1:size(fea.grid.c,2),[],fea); ref = evalexpr0('c',xi,1,1:size(fea.grid.c,2),[],fea); err = sqrt(sum(err.^2)/sum(ref.^2)); if( ~isempty(fid) ) fprintf(fid,'\nL2 Error: %f\n',err) fprintf(fid,'\n\n') end out.err = err; out.pass = out.err<0.1; if ( nargout==0 ) clear fea out end