FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_CONVDIFF3 1D Time dependent convection and diffusion equation example.
[ FEA, OUT ] = EX_CONVDIFF3( VARARGIN ) 1D time dependendt convection and diffusion equation on a line with an infinately oscillating exact solution. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- w scalar {1.5*pi} Simulation parameter U scalar {2} Simulation parameter a scalar {1} Convection velocity nu scalar {0.1} Diffusion coefficient hmax scalar {1/25} Max grid cell size dt scalar {0.02} Time step size ischeme scalar {3} Time stepping scheme sfun string {sflag2} Shape function iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'w', 1.5*pi; ... 'U', 2; ... 'a', 1; ... 'nu', 0.1; ... 'hmax', 1/25; ... 'dt' 0.02; ... 'ischeme' 3; ... 'sfun', 'sflag1'; ... 'iplot', 1; ... 'tol', 3e-2; ... 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; w = opt.w; U = opt.U; a = opt.a; nu = opt.nu; l1 = ['(',num2str(a),'+sqrt(',num2str(a^2),'+',num2str(4*nu*w),'*i))/',num2str(2*nu)]; l2 = ['(',num2str(a),'-sqrt(',num2str(a^2),'+',num2str(4*nu*w),'*i))/',num2str(2*nu)]; refsol = ['(exp(',l1,'*x)-exp(',l2,'*x))/(exp(',l1,')-exp(',l2,'))*',num2str(U),'*exp(i*',num2str(w),'*t)']; refsol0 = ['(exp(',l1,'*x)-exp(',l2,'*x))/(exp(',l1,')-exp(',l2,'))*',num2str(U)]; % Grid generation. fea.grid = linegrid( 1/opt.hmax, 0, 1 ); % Problem definition. fea.sdim = { 'x' }; fea = addphys( fea, @convectiondiffusion ); fea.phys.cd.sfun = { opt.sfun }; fea.phys.cd.eqn.coef{2,4} = { opt.nu }; fea.phys.cd.eqn.coef{3,4} = { opt.a }; fea = parsephys(fea); % Parse and solve problem. fea = parseprob( fea ); fea.bdr.d{1} = 0; fea.bdr.d{2} = [num2str(U),'*cos(',num2str(w),'*t)']; fea.bdr.n = cell(1,2); x = fea.grid.p'; if( strcmp( opt.sfun,'sflag2' ) ) x = [ x; (x(2:end)+x(1:end-1))/2 ]; end init = real( eval( refsol0 ) ); [fea.sol.u,tlist] = solvetime( fea, 'fid', fid, 'init', init, 'ischeme', opt.ischeme, 'tstep', opt.dt, 'tmax', 1 ); % Postprocessing. if( opt.iplot>0 ) figure; if( opt.iplot>1 ) i_sol_list = 1:numel(tlist); else i_sol_list = numel(tlist); end [~,ix] = sort( x ); for i_sol=i_sol_list t = tlist(i_sol); clf postplot( fea, 'surfexpr', 'c', 'solnum', i_sol ); hold on u_r = real( eval( refsol ) ); plot( sort(x), u_r(ix), 'r--' ); title( ['Solution at time ',num2str(t)]) xlabel( 'x' ) drawnow end end % Error checking. for i_sol=1:numel(tlist) u_i = fea.sol.u(:,i_sol); t = tlist(i_sol); u_r = real( eval( refsol ) ); errnm(i_sol) = norm( u_i - u_r )/norm( u_r ); end out.err = errnm; out.pass = all( errnm<opt.tol ); if ( nargout==0 ) clear fea out end