FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_CUSTOM_EQUATION1 1D Black-Scholes custom equation example.
[ FEA, OUT ] = EX_CUSTOM_EQUATION1( VARARGIN ) 1D Black-Scholes model equation example using the custom equation physics mode. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- icase scalar {1}/2 Test case equation to solve tmax scalar {1} Maximum/stopping time len scalar {1} Length of domain hmax scalar {1/20} Grid cell size ischeme scalar {3} Time stepping scheme sfun string {sflag1} Finite element shape function iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'icase', 1; ... 'tmax', 1; ... 'len', 1; ... 'hmax', 1/20; ... 'ischeme' 3; ... 'sfun', 'sflag1'; ... 'iplot', 1; ... 'dvname', 'u'; ... 'tol', 1.1e-2; ... 'fid', 1 }; [got,opt] = parseopt( cOptDef, varargin{:} ); fid = opt.fid; % Grid generation. nx = round( opt.len/opt.hmax ); fea.grid = linegrid( nx, 0, opt.len ); % Problem definition. u = opt.dvname; switch( opt.icase ) case 1 seqn = [u,''' - 1/2*',u,'x_x - ',u,'x_t + ',u,'_t = (x-t)^5 - 10*(x-t)^4 - 10*(x-t)^3']; case 2 seqn = [u,''' - 1/2*x^2*',u,'x_x - x*',u,'x_t + ',u,'_t = (x-t)^5 - 5*(x-t)^4 - 5*x*(x-t)^4 - 10*x^2*(x-t)^3']; end refsol = '(x-t).^5'; init_u = 'x^5'; % Set up problem struct. fea.sdim = { 'x' }; fea = addphys( fea, @customeqn ); fea.phys.ce.dvar = { u }; fea.phys.ce.eqn.seqn = seqn; fea.phys.ce.sfun = { opt.sfun }; % Dirichlet BCs for the left and right boundaries. fea.phys.ce.bdr.coef{1,5} = { 1 1 }; fea.phys.ce.bdr.coef{1,7} = { '-t^5' ['(',num2str(opt.len),'-t)^5'] }; % Check and parse problem struct. fea = parsephys( fea ); fea = parseprob( fea ); % Call to time-dependent solver. [fea.sol.u,tlist] = solvetime( fea, 'fid', fid, ... 'tmax', opt.tmax, ... 'init', init_u, ... 'icub', 6, ... 'ischeme', opt.ischeme, ... 'tstep', opt.tmax/100); % Postprocessing. fea.sol.t = tlist(end); fea.sol.u = fea.sol.u(:,end); refsol = strrep( refsol, 't', num2str(fea.sol.t) ); if( opt.iplot>0 ) figure postplot( fea, 'surfexpr', u, 'axequal', 'off', 'linewidth', 2 ) title( ['Solution at time ',num2str(fea.sol.t)] ) hold on x = linspace(0,opt.len,25); u_ref = eval(refsol); plot( x, u_ref, 'r--' ) end % Error checking. err = evalexpr( ['abs(',refsol,'-',u,')'], linspace(0,opt.len,10), fea ); err = norm(err); if( ~isempty(fid) ) fprintf(fid,'\nL2 Error: %f\n',err) fprintf(fid,'\n\n') end out.err = err; out.pass = out.err<opt.tol; if ( nargout==0 ) clear fea out end