FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_DIFFUSION2 1D Time dependent diffusion equation examples.
[ FEA, OUT ] = EX_DIFFUSION2( VARARGIN ) 1D time dependent diffusion equation on a line with exact solutions. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- nu scalar {1e-1} Diffusion coefficient icase scalar {2} Test case hmax scalar {1/25} Max grid cell size dt scalar {0.1} Time step size ischeme scalar {3} Time stepping scheme sfun string {sflag1} Shape function iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'nu', 1e-1; ... 'icase', 2; ... 'hmax', 1/25; ... 'dt' 0.1; ... 'ischeme' 3; ... 'sfun', 'sflag1'; ... 'iplot', 1; ... 'tol', 1e-2; ... 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; tmax = 1; switch( opt.icase ) case 1 refsol = '(1-x)*2.2+x*3.3'; case 2 n = 1; refsol = ['exp(-',num2str(opt.nu*n^2*pi^2),'*t)*sin(',num2str(n*pi),'*x)']; end % Grid generation. fea.grid = linegrid( 1/opt.hmax, 0, 1 ); % Problem definition. fea.sdim = { 'x' }; fea = addphys( fea, @convectiondiffusion ); fea.phys.cd.sfun = { opt.sfun }; fea.phys.cd.eqn.coef{2,4} = { opt.nu }; fea = parsephys(fea); % Parse and solve problem. x = fea.grid.p'; n = length(x); if( strcmp( opt.sfun,'sflag2' ) ) x = [ x; (x(2:end)+x(1:end-1))/2 ]; end t = 0; u0 = eval( refsol ); fea = parseprob( fea ); if( opt.ischeme>0 ) fea.bdr.d{1} = refsol; fea.bdr.d{2} = refsol; fea.bdr.n = cell(1,2); [fea.sol.u,tlist] = solvetime( fea, 'fid', fid, 'init', u0, 'ischeme', opt.ischeme, 'tstep', opt.dt, 'tmax', tmax, 'nstbwe', 0, 'tstop', 0, 'imass', 2 ); else [M,A,f] = assembleprob( fea, 'f_m', 1, 'imass', 1, 'f_a', 1, 'f_f', 1, 'f_sparse', 1 ); M = spdiags( full(sum(M')'), 0, size(M,1), size(M,1) ); fea.sol.u = u0; dt = opt.dt; it = 0; tlist = 0; if( opt.ischeme==-1 ) % Crank-Nicolson. C = [ M + dt/2*A ]; elseif( opt.ischeme==-2 ) % Backward Euler. C = [ M + dt*A ]; end C(1,:) = 0; C(1,1) = 1; C(n,:) = 0; C(n,n) = 1; while 1 t = t + dt; it = it + 1; u_r = eval( refsol ); if( opt.ischeme==-1 ) % Crank-Nicolson. b = [ [ M - dt/2*A ]*u0 + dt*f ]; elseif( opt.ischeme==-2 ) % Backward Euler. b = [ M*u0 + dt*f ]; end b(1) = u_r(1); b(n) = u_r(n); u1 = C\b; if( t>=tmax ) break end err = norm( u1 - u_r )/norm( u_r ); errnm(it) = err; if( ~isempty(fid) ) fprintf( fid, 'Time = %f, error norm = %d\n', t, err ); end fea.sol.u = [ fea.sol.u u1 ]; tlist = [ tlist t ]; u0 = u1; end end % Postprocessing. if( opt.iplot>0 ) figure; if( opt.iplot>1 ) i_sol_list = 1:numel(tlist); else i_sol_list = numel(tlist); end [~,ix] = sort( x ); for i_sol=i_sol_list t = tlist(i_sol); clf postplot( fea, 'surfexpr', 'c', 'solnum', i_sol ); hold on u_r = eval( refsol ); plot( sort(x), u_r(ix), 'r--' ); title( ['Solution at time ',num2str(t)]) xlabel( 'x' ) drawnow end end % Error checking. for i_sol=1:numel(tlist) u_i = fea.sol.u(:,i_sol); t = tlist(i_sol); u_r = eval( refsol ); errnm(i_sol) = norm( u_i - u_r )/norm( u_r ); end out.err = errnm; out.pass = all( errnm<opt.tol ); if ( nargout==0 ) clear fea out end