FEATool Multiphysics
v1.17.1
Finite Element Analysis Toolbox
|
EX_EDDYCURRENTS1 2D Eddy currents test example.
[ FEA, OUT ] = EX_EDDYCURRENTS1( VARARGIN ) 2D Eddy currents test example for vector elements (Nedelec). Accepts the following property/value pairs.
[1] I. Anjam, J. Valdman, Fast MATLAB assembly of FEM matrices in 2D and 3D: Edge elements, Applied Mathematics and Computation, vol 267, 2015, pp 252-263, DOI:10.1016/j.amc.2015.03.105.
Input Value/{Default} Description ----------------------------------------------------------------------------------- icase integer 2/{1} Predefined test case hmax scalar {0.01} Grid cell size sfun string {sf_simp_N1} Vector shape function (Nedelec) iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'icase', 1; 'hmax', 0.01; 'sfun', 'sf_simp_N1'; 'iplot', 1; 'tol', 0.01; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); % Geometry and grid generation. fea.sdim = {'x','y'}; fea.geom.objects = { gobj_rectangle() }; fea.grid = quad2tri( rectgrid(ceil(1/opt.hmax)) ); % Problem definition. fea = addphys( fea, @customeqn, {'E'} ); fea.phys.ce.eqn.seqn = {'Ec_c + E_t = 0'}; fea.phys.ce.sfun = {opt.sfun}; if( opt.icase==2 ) % Set homogenous Neumann BCs. [fea.phys.ce.bdr.coef{5}{:}] = deal(0); end % Parse problem. fea = parsephys( fea ); fea = parseprob( fea ); % Define manual source term with rank 3 to each vector compnent. switch( opt.icase ) case 1 f1 = '2+y*(1-y)'; f2 = '2+x*(1-x)'; case 2 f1 = '(x>y)*(sin(2*pi*x) + 2*pi*cos(2*pi*x)*(x - y)) - (x>y)*(cos(y*(x - y)^2*(x - 1)^2)*(2*y*(x - 1)^2 - (2*x - 2*y)*(x - 1)^2 - (2*x - 2)*(x - y)^2 + y*(2*x - 2*y)*(2*x - 2)) + sin(y*(x - y)^2*(x - 1)^2)*((x - y)^2*(x - 1)^2 - y*(2*x - 2*y)*(x - 1)^2)*(y*(2*x - 2*y)*(x - 1)^2 + y*(2*x - 2)*(x - y)^2))'; f2 = '(x>y)*(sin(y*(x - y)^2*(x - 1)^2) - sin(2*pi*x)) + (x>y)*sin(y*(x - y)^2*(x - 1)^2)*(y*(2*x - 2*y)*(x - 1)^2 + y*(2*x - 2)*(x - y)^2)^2 - (x>y)*cos(y*(x - y)^2*(x - 1)^2)*(2*y*(x - 1)^2 + 2*y*(x - y)^2 + 2*y*(2*x - 2*y)*(2*x - 2)) + 4*(x>y)*pi^2*sin(2*pi*x) - 4*(x>y)*pi^2*sin(2*pi*x)'; end fea.eqn.f.form{1} = 1; fea.eqn.f.coef{1} = {cat(3,{f1},{f2})}; % Solve problem. fea.sol.u = solvestat( fea, 'fid', opt.fid ); % Postprocessing. if( opt.iplot ) subplot(2,2,1) postplot( fea, 'surfexpr', 'E#1', 'surfhexpr', 'E#1' ) title( 'Solution component #1') subplot(2,2,2) postplot( fea, 'surfexpr', 'E#2', 'surfhexpr', 'E#2' ) title( 'Solution component #2') subplot(2,2,3) postplot( fea, 'surfexpr', 'Ec', 'surfhexpr', 'Ec' ) title( 'Curl solution') end % Error checking. switch( opt.icase ) case 1 refsol = { 'y*(1-y)', ... 'x*(1-x)', ... '2*(y-x)' }; case 2 refsol = { '(x>y)*(sin(2*pi*x) + 2*pi*cos(2*pi*x)*(x - y))', ... '(x>y)*(sin(y*(x-y)^2*(x-1)^2) - sin(2*pi*x))', ... '(x>y)*(2*y*(x-y)*(x-1)*(2*x-y-1)*cos(y*(x-y)^2*(x-1)^2))' }; end out.err = [ intsubd(['(',refsol{1},'-E#1)^2'],fea), ... intsubd(['(',refsol{2},'-E#2)^2'],fea), ... intsubd(['(',refsol{3},'-Ec)^2'],fea) ]; out.pass = all( out.err < opt.tol ); if( nargout==0 ) clear fea out end