FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_EULER_BEAM2 1D Euler-Bernoulli beam model example.
[ FEA, OUT ] = EX_EULER_BEAM2( VARARGIN ) 1D Euler-Bernoulli beam model example with a distributed load. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- L scalar {2} Beam length E scalar {3} Elastic modulus I expression {4} Cross section moment of intertia q expression {-5} Beam force nx scalar {6} Number of grid cells iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'L', 2; 'E', 3; 'I', 4; 'q', -5; 'nx' 6; 'iplot', 1; 'tol', 1e-2; 'fid', 1 }; [got,opt] = parseopt( cOptDef, varargin{:} ); fid = opt.fid; % Grid generation. fea.sdim = {'x'}; fea.grid = linegrid( opt.nx, 0, opt.L ); % Problem and equation definitions. fea = addphys( fea, @eulerbeam ); fea.phys.eb.eqn.coef{3,end} = { opt.E }; fea.phys.eb.eqn.coef{4,end} = { opt.I }; fea.phys.eb.eqn.coef{5,end} = { opt.q }; fea.phys.eb.bdr.coef{1,5}{1} = 1; fea = parsephys( fea ); % Coefficients and equation/postprocessing expressions. fea.expr = { 'L', opt.L ; 'M', fea.phys.eb.eqn.vars{3,2} }; % Parse and solve problem. fea = parseprob( fea ); fea.sol.u = solvestat( fea, 'icub', 3, 'fid', opt.fid ); % Postprocessing. if( opt.iplot ) figure subplot(3,1,1), hold on postplot( fea, 'surfexpr', 'E_eb*I_eb*v/(q_eb*L^4)', 'linewidth', 2 ) postplot( fea, 'surfexpr', 'x^2*(6*L^2-4*L*x+x^2)/24/L^4', 'color', 'r', 'linestyle', ':' ) title( 'E_eb*I_eb*v(x)/(q_eb*L^4)' ) axis normal, grid on subplot(3,1,2), hold on postplot( fea, 'surfexpr', 'E_eb*I_eb*vx/(q_eb*L^3)', 'linewidth', 2 ) postplot( fea, 'surfexpr', 'x*(3*L^2-3*L*x+x^2)/6/L^3', 'color', 'r', 'linestyle', ':' ) title( 'E_eb*I_eb*theta(x)/(q_eb*L^3)' ) axis normal, grid on subplot(3,1,3), hold on postplot( fea, 'surfexpr', 'M/(q_eb*L^2)', 'linewidth', 2 ) postplot( fea, 'surfexpr', '-1/2*(L-x)^2/L^2', 'color', 'r', 'linestyle', ':' ) axis normal, grid on title( 'M(x)/(q_eb*L^2)' ) end % Error checking. err_v = evalexpr( 'abs(v-q_eb*x^2*(6*L^2-4*L*x+x^2)/(24*E_eb*I_eb))', ... linspace(0,opt.L,3*opt.nx), fea ); err_th = evalexpr( 'abs(vx-q_eb*x*(3*L^2-3*L*x+x^2)/(6*E_eb*I_eb))', ... linspace(0,opt.L,3*opt.nx), fea ); err_M = evalexpr( 'abs(vxx-q_eb/2*(L-x)^2/(E_eb*I_eb))', ... linspace(0,opt.L,3*opt.nx), fea ); err = norm([err_v;err_th;err_M]); out.err = err; out.pass = out.err<opt.tol; if ( nargout==0 ) clear fea out end