FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_FLUIDSTRUCTURE2 Fluid-structure interaction for an elastic beam.
[ FEA, OUT ] = EX_FLUIDSTRUCTURE2( VARARGIN ) Example for fluid- structure interaction flow around an elastic beam at Re = 100.
[1] Hron J. A monolithic FEM/multigrid solver for ALE formulation of fluid structure interaction with application in biomechanics. In H.-J. Bungartz and M. Schäfer, editors, Fluid-Structure Interaction: Modelling, Simulation, Optimisation, LLNCSE. Springer, 2006.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- sf_u string {sflag1} Shape function for velocity sf_p string {sflag1} Shape function for pressure iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'sf_u', 'sflag1'; 'sf_p', 'sflag1'; 'iplot', 1; 'tmax', 15; 'tol', [0.1 0.1 0.1]; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; rho = 1e3; miu = 1; umean = 1; diam = 0.1; % Geometry. fea.sdim = { 'x', 'y' }; gobj1 = gobj_rectangle( 0, 2.5, 0, 0.41, 'R1' ); gobj2 = gobj_circle( [0.2 0.2], 0.05, 'C1' ); gobj3 = gobj_rectangle( [0.2], [0.6], [0.2-0.01], [0.2+0.01], 'R2' ); fea.geom.objects = { gobj1 gobj2 gobj3 }; fea.geom = copy_geometry_object( 'C1', fea.geom ); fea.geom = copy_geometry_object( 'R2', fea.geom ); fea.geom = geom_apply_formula( fea.geom, 'R1-C1-R2' ); fea.geom = geom_apply_formula( fea.geom, 'R3-C2' ); % Grid generation. hmaxb = [ 0.025*ones(1,4) 0.01*ones(1,4) 0.005*ones(1,5) ]*1; fea.grid = gridgen( fea, 'hmaxb', hmaxb, 'gridgen', 'gridgen2d', 'fid', opt.fid ); p_A = [0.6;0.2]; [~,i_A] = min(sum((fea.grid.p'-repmat(p_A',size(fea.grid.p,2),1)).^2,2)); fea.grid.p(:,i_A) = p_A; % Equation settings. fea = addphys( fea, @fluidstructure ); fea.phys.fsi.sfun = { opt.sf_u, opt.sf_u, opt.sf_p, opt.sf_u, opt.sf_u }; fea.phys.fsi.eqn.coef{1,end} = { rho, 1e4 }; % Density. fea.phys.fsi.eqn.coef{2,end} = { miu, 0 }; % Viscosity. fea.phys.fsi.eqn.coef{3,end} = { 0, 0.4 }; % Poisson's ratio. fea.phys.fsi.eqn.coef{4,end} = { 0, 1.4e6 }; % Modulus of elasticity. fea.phys.fsi.prop.active = [ 1, 0; 1, 0; 1, 0; 0, 1; 0, 1 ]; % Boundary settings. fea.phys.fsi.bdr.sel = [ 1 3 1 2 1 1 1 1 6 6 -2 -2 -2 ]; fea.phys.fsi.bdr.coef{2,end}{1,4} = ... [num2str(1.5*umean*4/0.1608),'*y*(0.41-y)*(0.5*(1-cos(pi/2*t))*(t<2)+(t>=2))']; % Inflow velocity. % Solver. fea = parsephys(fea); fea = parseprob(fea); [fea.sol.u,fea.sol.t,fea.sol.grid.p] = ... fsisolve( fea, 'tstep', 0.01, 'tmax', opt.tmax, 'fid', opt.fid ); % Calculate benchmark quantities (line integration method). s_tfx = ['nx*p+',num2str(miu),'*(-2*nx*ux-ny*(uy+vx))']; s_tfy = ['ny*p+',num2str(miu),'*(-nx*(vx+uy)-2*ny*vy)']; i_int = [5:8,11:13]; % Integration boundaries. i_cub = 10; i1 = find(fea.sol.t>=fea.sol.t(end)-1); i1 = i1(1); i2 = length(fea.sol.t); i_cnt = 0; for i=i1:i2 i_cnt = i_cnt + 1; p_Ai = fea.sol.grid.p(:,i_A,i); ux_A(i_cnt) = evalexpr( 'dx', p_Ai, fea, i ); uy_A(i_cnt) = evalexpr( 'dy', p_Ai, fea, i ); F_d(i_cnt) = intbdr( s_tfx, fea, i_int, i_cub, i, 1 ); F_l(i_cnt) = intbdr( s_tfy, fea, i_int, i_cub, i, 1 ); end % Postprocessing. if( opt.iplot>0 ) postplot(fea,'surfexpr','p') figure subplot(2,2,1) plot( fea.sol.t(i1:i2), ux_A ) xlabel('time') ylabel('x-displacement') subplot(2,2,2) plot( fea.sol.t(i1:i2), uy_A ) xlabel('time') ylabel('y-displacement') subplot(2,2,3) plot( fea.sol.t(i1:i2), F_l ) xlabel('time') ylabel('lift force') subplot(2,2,4) plot( fea.sol.t(i1:i2), F_d ) xlabel('time') ylabel('drag force') end % Error checking. out.t = fea.sol.t(i1:i2); out.ux_A = ux_A; out.uy_A = uy_A; out.F_d = F_d; out.F_l = F_l; out.vals = [ min(ux_A), max(ux_A) ; min(uy_A), max(uy_A) ; min(F_d), max(F_d) ; min(F_l), max(F_l) ]; out.ref = [ -14.58e-3-12.44e-3, -14.58e-3+12.44e-3 ; 1.23e-3-80.6e-3, 1.23e-3+80.6e-3 ; 208.83-73.75, 208.83+73.75 ; 0.88-234.2, 0.88+234.2 ]; out.err = abs(out.vals-out.ref)./abs(out.ref); out.pass = all(out.err(:) < 0.1 | (out.err(:)>=0.1 & out.err(:)<0.5)); if( nargout==0 ) clear fea out end