FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_HEAT_EXCHANGER1 Example of free and forced convection around a heated cylinder.
[ FEA, OUT ] = EX_HEAT_EXCHANGER1( VARARGIN ) Sets up and solves an example of temperature transport in a fluid around a heated cylinder. The model involves both free and forced convection by using the Boussinesq approximation.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.0005} Max grid cell size sf_u string {sflag2} Shape function for velocity sf_p string {sflag1} Shape function for pressure sf_T string {sflag1} Shape function for temperature solver string {} Solver selection default, openfoam, fenics iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'hmax', 0.0004; 'sf_u', 'sflag1'; 'sf_p', 'sflag1'; 'sf_T', 'sflag1'; 'solver', ''; 'iplot', 1; 'w', 0.0075; 'h', 0.05; 'yc', 0.02; 'r', 0.003; 'rho', 2.2e1; 'miu', 2.8e-3; 'cp', 3.1e3; 'k', 0.55; 'al', 0.26e-3; 'g', 9.81; 'vin', 40e-2; 'Tc', 300; 'Th', 330; 'tol', 0.1; 'fid', 1 }; [got,opt] = parseopt( cOptDef, varargin{:} ); fid = opt.fid; % Geometry definition. fea.sdim = { 'x' 'y' }; fea.geom.objects = { gobj_rectangle( 0, opt.w, 0, opt.h, 'R1' ) ... gobj_circle( [0 opt.yc], opt.r, 'C1' ) }; fea = geom_apply_formula( fea, 'R1-C1' ); % Grid generation. fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', fid ); % Boundary conditions. dtol = 1e-6; ib_l = findbdr( fea, ['x<',num2str(dtol)] ); % Right boundary numbers. ib_r = findbdr( fea, ['x>',num2str(opt.w-dtol)] ); % Left boundary number. ib_b = findbdr( fea, ['y<',num2str(dtol)] ); % Bottom boundary number. ib_t = findbdr( fea, ['y>',num2str(opt.h-dtol)] ); % Top boundary number. ib_c = findbdr( fea, ['sqrt(x.^2+(y-',num2str(opt.yc),').^2)<',num2str(opt.r+dtol)] ); % Cylinder boundary numbers. % Problem definition. fea.expr = { 'rho' opt.rho ; 'miu' opt.miu ; 'cp' opt.cp ; 'k' opt.k ; 'alpha' opt.al ; 'g' opt.g ; 'vin' opt.vin ; 'Tc' opt.Tc ; 'Th' opt.Th }; fea = addphys(fea,@navierstokes); % Add Navier-Stokes equations physics mode. fea.phys.ns.eqn.coef{1,end} = { 'rho' }; fea.phys.ns.eqn.coef{2,end} = { 'miu' }; fea.phys.ns.eqn.coef{4,end} = { 'alpha*g*rho*(T-Tc)' }; fea.phys.ns.bdr.sel(ib_t) = 4; % Set pressure to zero on top boundary segment. fea.phys.ns.bdr.sel(ib_b) = 2; % Set y-velocity to vin at bottom boundary. fea.phys.ns.bdr.coef{2,end}{2,ib_b} = 'vin'; fea.phys.ns.sfun = { opt.sf_u opt.sf_u opt.sf_p }; fea = addphys(fea,@heattransfer); % Add heat transfer physics mode. fea.phys.ht.sfun = { opt.sf_T }; fea.phys.ht.eqn.coef{1,end} = { 'rho' }; fea.phys.ht.eqn.coef{2,end} = { 'cp' }; fea.phys.ht.eqn.coef{3,end} = { 'k' }; fea.phys.ht.eqn.coef{4,end} = { fea.phys.ns.dvar{1} }; fea.phys.ht.eqn.coef{5,end} = { fea.phys.ns.dvar{2} }; fea.phys.ht.bdr.sel = 3*ones( 1, max(fea.grid.b(3,:)) ); % Default to symmetry BCs. fea.phys.ht.bdr.sel(ib_t) = 2; % Set top boundary to convective flux/outflow. fea.phys.ht.bdr.sel([ib_c ib_b]) = 1; % Set temperature to bottom and cylinder boundaries. [fea.phys.ht.bdr.coef{1,end}{ib_b}] = deal('Tc'); [fea.phys.ht.bdr.coef{1,end}{ib_c}] = deal('Th'); % Parse and solve problem. fea = parsephys(fea); [fea.bdr.d{1}{[ib_l ib_r]}] = deal(0); % Manually apply slip boundary conditions. [fea.bdr.d{2}{[ib_l ib_r]}] = deal([]); [fea.bdr.n{2}{[ib_l ib_r]}] = deal(0); fea = parseprob(fea); if( strcmp(opt.solver,'openfoam') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = openfoam( fea, 'fid', fid, 'logfid', logfid, 'nproc', 1 ); fid = logfid; elseif( strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', fid ); else fea.sol.u = solvestat( fea, 'fid', fid, 'maxnit', 50 ); end % Postprocessing. if( opt.iplot>0 ) figure subplot(1,2,1) postplot( fea, 'surfexpr', 'sqrt(u^2+v^2)', 'arrowexpr', {'u' 'v'} ) hold on fea.grid.p(1,:) = -fea.grid.p(1,:); % Mirror solution. postplot( fea, 'surfexpr', 'sqrt(u^2+v^2)', 'arrowexpr', {'u' 'v'} ) title('Velocity field') subplot(1,2,2) postplot( fea, 'surfexpr', 'T' ) hold on fea.grid.p(1,:) = -fea.grid.p(1,:); % Mirror solution. postplot( fea, 'surfexpr', 'T' ) title('Temperature') end % Average temperature at outlet. out.T_av_out = intbdr( 'T*v', fea, ib_t )/intbdr( 'v', fea, ib_t ); out.err = abs(intbdr('T-Tc',fea,3)/0.0075-1.7)/1.7; out.pass = out.err < opt.tol; if( nargout==0 ) clear fea out end