Finite Element Analysis Toolbox
ex_linearelasticity6.m File Reference

Description

EX_LINEARELASTICITY6 NAFEMS LE6 skew plate benchmark.

[ FEA, OUT ] = EX_LINEARELASTICITY6( VARARGIN ) Skew plate under normal pressure (NAFEMS LE6 Benchmark).

Reference

[1] National Agency for Finite Element Methods and Standards. The Standard NAFEMS Benchmarks. Rev. 3. United Kingdom: NAFEMS, October 1990.

Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
hmax        string {0.05}          Grid size
sfun        string {sflag2}        Shape function
iplot       scalar 0/{1}           Plot solution (=1)
                                                                                  .
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct

Code listing

 cOptDef = { 'hmax',    0.05;
             'sfun',     'sflag2';
             'iplot',    1;
             'tol',      0.1;
             'fid',      1 };
 [got,opt] = parseopt(cOptDef,varargin{:});
 fid       = opt.fid;


 E    = 210e9;
 nu   = 0.3;
 rho  = 7800;
 t    = 0.01;
 load = -0.7e3;


% Grid definition.
 fea.sdim = {'x', 'y', 'z'};
 a = cos(pi*30/180);
 p = [0 1 1+a a;0 0 0.5 0.5]';
 geom_2d.objects{1} = gobj_polygon(p);
 grid_2d = gridgen( geom_2d, 'hmax', opt.hmax, 'fid', fid );
 fea.grid = gridextrude( grid_2d, max(3,ceil(t/opt.hmax)), t );


% Equations and problem definition.
 fea = addphys( fea, @linearelasticity );
 fea.phys.el.eqn.coef{1,end} = { nu   };
 fea.phys.el.eqn.coef{2,end} = { E    };
 fea.phys.el.eqn.coef{3,end} = { rho  };
 fea.phys.el.sfun            = { opt.sfun, opt.sfun, opt.sfun };


% Set/constrain w = 0 on sides (boundaries 1-4).
 n_bdr = 6;
 bctype = mat2cell( zeros(3,n_bdr), [1 1 1], ones(1,n_bdr) );
 [bctype{3,[1:4]}] = deal(1);
 fea.phys.el.bdr.coef{1,5} = bctype;

% Set/constrain u, v = 0 on edge 2, x = y = 0.
 edg(1).index = 2;
 edg(1).type = 'constraint';
 edg(1).dvar = 1;
 edg(1).expr = 0;

 edg(2).index = 2;
 edg(2).type = 'constraint';
 edg(2).dvar = 2;
 edg(2).expr = 0;

% Set/constrain v = 0 on edge 1, x = 0, y = 1.
 edg(3).index = 1;
 edg(3).type = 'constraint';
 edg(3).dvar = 2;
 edg(3).expr = 0;
 fea.edg = edg;

% Apply vertical load to top boundary.
 bccoef = mat2cell( zeros(3,n_bdr), [1 1 1], ones(1,n_bdr) );
 bccoef{3,6} = load;
 fea.phys.el.bdr.coef{1,end} = bccoef;


% Solve problem.
 fea = parsephys( fea );
 fea = parseprob( fea );

 fea.sol.u = solvestat( fea, 'fid', fid );


% Postprocessing.
 if( opt.iplot>0 )
   postplot( fea, 'surfexpr', 'sqrt(u^2+v^2+w^2)', ...
             'deformexpr', {'u', 'v', 'w'} )
 end


% Error checking.
 out = [];
 p_E = [0.933012701892219; 0.25; 0];
 ps1_E = evalexpr( fea.phys.el.eqn.vars{12,2}, p_E, fea );
 ps2_E = evalexpr( fea.phys.el.eqn.vars{13,2}, p_E, fea );
 ps3_E = evalexpr( fea.phys.el.eqn.vars{14,2}, p_E, fea );
 ps_E_max = max([ps1_E,ps2_E,ps3_E]);
 ps_E_ref = 0.802e6;
 out.w_E = evalexpr( 'w', p_E, fea );
 out.ps_E = [ps1_E, ps2_E, ps3_E];
 out.err  = abs(ps_E_max-ps_E_ref)/ps_E_ref;
 out.pass = out.err < opt.tol;


 if( nargout==0 )
   clear fea out
 end