FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_MULTIPHASE1 Static bubble example.
[ FEA, OUT ] = EX_MULTIPHASE1( VARARGIN ) Sets up and solves a stationary static bubble example where the pressure jump should be equal to sigma/r. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- rho scalar {1e4} Density miu scalar {1} Molecular/dynamic viscosity sigma scalar {1} Coefficient of surface tension r scalar {0.25} Bubble radius lbi scalar 1/{0} Exact or transformed surface tension source term igrid scalar 0/{1} Cell type (0=quadrilaterals, 1=triangles) hmax scalar {1/30} Max grid cell size ischeme scalar {3} Time stepping scheme sf_u string {sflag2} Shape function for velocity sf_p string {sflag1} Shape function for pressure iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'rho', 1e4; ... 'miu', 1; ... 'sigma', 1; ... 'r', 0.25; ... 'lbi', 0; ... 'igrid', 1; ... 'hmax', 1/30; ... 'ischeme' 3; ... 'sf_u', 'sflag2'; ... 'sf_p', 'sflag1'; ... 'iplot', 1; ... 'tol', 0.3; ... 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Geometry and grid generation. fea.sdim = { 'x' 'y' }; % Coordinate names. fea.grid = rectgrid(round(1/opt.hmax),round(2/opt.hmax),[0 1;0 1]); if ( opt.igrid==1 ) fea.grid = quad2tri( fea.grid ); end n_bdr = max(fea.grid.b(3,:)) + 1; % Increment number of boundaries. fea.grid.b(3,1) = n_bdr; % Set first boundary edge to boundary n_bdr. % Problem definition. phi = ['(sqrt((x-0.5)^2+(y-0.5)^2)-',num2str(opt.r),')']; % Level set function. dh = num2str(1*opt.hmax); % Smoothing region width. dw = ['(',phi,'/',dh,')']; smhs = ['((0.5*(1+',dw,'+1/pi*sin(pi*',dw,')))*(',dw,'>-1)*(',dw,'<1)+(',dw,'>=1))']; % Smooth heaviside function. smdel = ['0.5*(1+cos(pi*',dw,'))/',dh,'*(',dw,'>-1)*(',dw,'<1)']; % Smooth delta function. sigma = num2str(opt.sigma); nx = ['(2*x-1)/(2*sqrt((x-0.5)^2+(y-0.5)^2+eps))']; ny = ['(2*y-1)/(2*sqrt((x-0.5)^2+(y-0.5)^2+eps))']; % Surface tension force source term. if ( ~opt.lbi ) % Exact curvature. kappa = ['1/sqrt((x-0.5)^2+(y-0.5)^2+eps)']; fx1 = ['-',sigma,'*',kappa,'*',nx,'*',smdel]; fy1 = ['-',sigma,'*',kappa,'*',ny,'*',smdel]; else % With Laplace-Beltrami transformation. fx1 = ['-',sigma,'*(1-(',nx,')^2)*',smdel]; fx2 = ['-',sigma,'*(-(',nx,')*(',ny,'))*',smdel]; fy1 = ['-',sigma,'*(-(',ny,')*(',nx,'))*',smdel]; fy2 = ['-',sigma,'*(1-(',ny,')^2)*',smdel]; end % Add Navier-Stokes equations physics mode. fea = addphys(fea,@navierstokes); fea.phys.ns.eqn.coef{1,end} = { opt.rho }; fea.phys.ns.eqn.coef{2,end} = { opt.miu }; fea.phys.ns.sfun = { opt.sf_u opt.sf_u opt.sf_p }; fea.phys.ns.eqn.coef{3,end} = { fx1 }; fea.phys.ns.eqn.coef{4,end} = { fy1 }; fea.phys.ns.bdr.sel(n_bdr) = 4; % Set pressure to zero on last boundary segment. % Parse problem. fea = parsephys(fea); if ( opt.lbi ) fea.eqn.f.form{1} = [2 3]; fea.eqn.f.form{2} = [2 3]; fea.eqn.f.coef{1} = {fx1 fx2}; fea.eqn.f.coef{2} = {fy1 fy2}; end fea = parseprob(fea); % Call to time-dependent solver. fea.sol.u = solvetime( fea, ... 'fid', fid, ... 'tmax', 0.3, ... 'tstep', 0.1, ... 'icub', 3, ... 'ischeme', opt.ischeme ); % Postprocessing. if ( opt.iplot>0 ) postplot(fea,'surfexpr','p') title('Pressure') end % Error checking. ind_p = [fea.eqn.ndof(1)+fea.eqn.ndof(2)+1:fea.eqn.ndof(1)+fea.eqn.ndof(2)+fea.eqn.ndof(3)]; dp = max(fea.sol.u(ind_p,end)) - min(fea.sol.u(ind_p,end)); out.err = abs(opt.sigma/opt.r - dp)/(opt.sigma/opt.r); out.pass = out.err<opt.tol; if ( nargout==0 ) clear fea out end