FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_MULTIPHASE2 Multiphase flow rising bubble example.
[ FEA, OUT ] = EX_MULTIPHASE2( VARARGIN ) A benchmark multiphase flow rising bubble example. Reference solution is given in the paper Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Meth. Fluids, 60: 1259-1288,
Input Value/{Default} Description ----------------------------------------------------------------------------------- rho1 scalar {1e2} Density of the bubble rho2 scalar {1e3} Density of the surrounding fluid miu1 scalar {1} Viscosity of the bubble miu2 scalar {1e1} Viscosity of the surrounding fluid gy scalar {0.98} Gravitational constant sigma scalar {24.5} Coefficient of surface tension igrid scalar 0/{1} Cell type (0=quadrilaterals, 1=triangles) hmax scalar {1/20} Max grid cell size dt scalar {0.1} Time step size sf_u string {sflag2} Shape function for velocity sf_p string {sflag1} Shape function for pressure sf_c string {sflag1} Shape function for the level set function iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'rho1', 1e2; ... 'rho2', 1e3; ... 'miu1', 1; ... 'miu2', 1e1; ... 'gy', 0.98; ... 'sigma', 24.5; ... 'igrid', 0; ... 'hmax', 1/20; ... 'dt', 0.1; ... 'sf_u', 'sflag2'; ... 'sf_p', 'sflag1'; ... 'sf_c', 'sflag1'; ... 'iplot', 1; ... 'itest', 0; ... 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Geometry and grid generation. fea.sdim = { 'x' 'y' }; % Coordinate names. fea.grid = rectgrid(round(1/opt.hmax),round(2/opt.hmax),[0 1;0 2]); if ( opt.igrid==1 ) fea.grid = quad2tri( fea.grid ); end n_bdr = max(fea.grid.b(3,:)) + 1; % Increment number of boundaries. fea.grid.b(3,1) = n_bdr; % Set first boundary edge to boundary n_bdr. % Problem definition. dh = num2str(1.5*opt.hmax); % Smoothing region width. dw = ['(c/',dh,'/(sqrt(cx^2+cy^2+eps)))']; nx = ['(cx/(sqrt(cx^2+cy^2+eps)))']; ny = ['(cy/(sqrt(cx^2+cy^2+eps)))']; smhs = ['((0.5*(1+',dw,'+1/pi*sin(pi*',dw,')))*(',dw,'>-1)*(',dw,'<1)+(',dw,'>=1))']; % Smooth heaviside function. smdel = ['0.5*(1+cos(pi*',dw,'))/',dh,'*(',dw,'>-1)*(',dw,'<1)']; % Smooth delta function. rho = [num2str(opt.rho1),'+',num2str(opt.rho2-opt.rho1),'*',smhs]; miu = [num2str(opt.miu1),'+',num2str(opt.miu2-opt.miu1),'*',smhs]; sigma = num2str(opt.sigma); % Add Navier-Stokes equations physics mode. fea = addphys(fea,@navierstokes); fea.phys.ns.eqn.coef{1,end} = { rho }; fea.phys.ns.eqn.coef{2,end} = { miu }; fea.phys.ns.bdr.sel(n_bdr) = 4; % Set pressure to zero on last boundary segment. fea.phys.ns.sfun = { opt.sf_u opt.sf_u opt.sf_p }; % Source terms for gravity and surface tension effects. fg = ['-(',rho,')*',num2str(opt.gy)]; fx1 = ['-',sigma,'*(1-(',nx,')^2)*',smdel]; fx2 = ['-',sigma,'*(-(',nx,')*(',ny,'))*',smdel]; fy1 = ['-',sigma,'*(-(',ny,')*(',nx,'))*',smdel]; fy2 = ['-',sigma,'*(1-(',ny,')^2)*',smdel]; % Add convection and diffusion physics mode for the level set equation. fea = addphys(fea,@convectiondiffusion); fea.phys.cd.sfun = { opt.sf_c }; fea.phys.cd.eqn.coef{2,4} = { 0.001 }; % Add stabilizing diffusion. fea.phys.cd.eqn.coef{3,4} = { 'u' }; % Convection velocity in the x-direction. fea.phys.cd.eqn.coef{4,4} = { 'v' }; % Convection velocity in the y-direction. % Parse physics modes. fea = parsephys(fea); % Correct source terms. fea.eqn.f.form{1} = [ 2 3]; fea.eqn.f.form{2} = [ 1 2 3]; fea.eqn.f.coef{1} = { fx1 fx2}; fea.eqn.f.coef{2} = {fg fy1 fy2}; % Implement slip boundary conditions on vertical walls. fea.bdr.d{2}{2} = []; fea.bdr.d{2}{4} = []; fea.bdr.n{2}{2} = 0; fea.bdr.n{2}{4} = 0; % Parse problem. fea = parseprob(fea); % Call to time-dependent solver. init = { '0', '0', '0', 'sqrt((x-0.5)^2+(y-0.5)^2)-0.25' }; fea.sol.u = solvetime( fea, ... 'fid', fid, ... 'tmax', 3.0*(~opt.itest), ... 'tstep', opt.dt, ... 'maxnit', 24*(~opt.itest)+1, ... 'icub', 3, ... 'init', init, ... 'ischeme', 3 ); % Postprocessing. if ( opt.iplot>0 ) subplot(2,2,1) postplot(fea,'surfexpr','sqrt(u^2+v^2)') title('Velocity field') subplot(2,2,2) postplot(fea,'surfexpr','p','evalstyle','exaxct') title('Pressure') subplot(2,2,3) postplot(fea,'surfexpr','c') title('Level set field') subplot(2,2,4) postplot(fea,'isoexpr','c','isolev',[0 0],'arrowexpr',{'u','v'}) plot([0 1 1 0 0],[0 0 2 2 0],'k') title('Interface') end out.err = []; out.pass = []; if ( nargout==0 ) clear fea out end