FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_NAVIERSTOKES17 2D Example for incompressible turbulent flow in a channel.
[ FEA, OUT ] = EX_NAVIERSTOKES17( VARARGIN ) Sets up and solves stationary turbulent flow at Re = 42800 in a between two flat parallel plates. The inflow profile is constant and the outflow should assume a fully developed turbulent profile (Ref. Laufer, J. 1950). Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- igrid scalar {3} Grid refinement level (>0=quadrilaterals, <0=triangles) sf_u string {sflag1} Shape function for velocity sf_p string {sflag1} Shape function for pressure iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'igrid', 3; 'solver', ''; 'sf_u', 'sflag1'; 'sf_p', 'sflag1'; 'iplot', 1; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Model parameters. Re = 42800; rho = 1; % Density. miu = 1/Re; % Molecular/dynamic viscosity. uin = 1; % Geometry and grid parameters. h = 1; % Height of rectangular domain. l = 5; % Length of rectangular domain. % Discretization parameters. sf_u = opt.sf_u; % FEM shape function type for velocity. sf_p = opt.sf_p; % FEM shape function type for pressure. % Geometry definition. gobj = gobj_rectangle( 0, l, -h/2, h/2 ); fea.geom.objects = { gobj }; fea.sdim = { 'x', 'y' }; % Coordinate names. % Grid generation. fea.grid = rectgrid( linspace(0,5,20), [-0.5 -0.45 -0.35 -0.2 0 0.2 0.35 0.45 0.5] ); for i=1:abs(opt.igrid)-1 fea.grid = gridrefine( fea.grid, fid ); end if( opt.igrid<0 ) fea.grid = quad2tri( fea.grid ); end % Problem definition. fea = addphys( fea, @navierstokes ); fea.phys.ns.eqn.coef{1,end} = { rho }; fea.phys.ns.eqn.coef{2,end} = { miu }; fea.phys.ns.eqn.coef{5,end} = { uin }; if( strcmp(opt.solver,'openfoam') ) fea.phys.ns.sfun = { 'sflag1', 'sflag1', 'sflag1' }; else fea.phys.ns.sfun = { sf_u sf_u sf_p }; % Set shape functions. end % Boundary conditions. i_inflow = 4; i_outflow = 2; fea.phys.ns.bdr.sel(i_inflow) = 2; fea.phys.ns.bdr.sel(i_outflow) = 3; fea.phys.ns.bdr.coef{2,end}{1,i_inflow} = uin; % Set inflow velocity. if( strcmp(opt.solver,'openfoam') ) fea.phys.ns.prop.turb.model = 'SpalartAllmaras'; else fea.phys.ns.prop.turb.model = 'algebraic'; end fea = parsephys(fea); % Check and parse physics modes. % Parse and solve problem. fea = parseprob(fea); % Check and parse problem struct. if( strcmp(opt.solver,'openfoam') ) logfid = fid; if( ~got.fid ), fid = []; end [fea.sol.u,~,fea.vars] = openfoam( fea, 'nproc', 1, 'fid', fid, 'logfid', logfid ); fid = logfid; else mxnit = 25; nlrlx = 0.5; told = 1e-3; tolc = 1e-4; fea.sol.u = solvestat( fea, 'fid', fid, 'maxnit', mxnit, 'nlrlx', nlrlx, 'tolchg', tolc, 'toldef', told ); end % Postprocessing. y_ref = [0,0.09830508474576277,0.2101694915254238,0.31186440677966104,0.3661016949152544,0.4508474576271188,0.5491525423728814,0.6271186440677967,0.7016949152542376,0.7864406779661017,0.8440677966101697,0.898305084745763,0.9593220338983053,0.9796610169491529,0.9864406779661019,1]/2; u_ref = [0.9972834919897843,0.9886928256326912,0.9780357557464595,0.9674135128859997,0.9487346180636177,0.9278964476433715,0.9029022521476668,0.8718133271418624,0.8469003947062924,0.7972951009983751,0.7457278848386352,0.6962270722080338,0.5357441374506622,0.32608544230322756,0.19455537497097786,0]'; n = length(y_ref); x = 0.96*l*ones(1,n); u = evalexpr( 'u', [x;y_ref], fea ); if( opt.iplot>0 ) figure subplot(2,1,1) postplot( fea, 'surfexpr', 'sqrt(u^2+v^2)', 'isoexpr', 'sqrt(u^2+v^2)' ) title('Velocity field') subplot(2,1,2) postplot( fea, 'surfexpr', 'p' ) title('Pressure') figure plot( u/max(u), y_ref, 'b.-' ) hold on plot( u_ref, y_ref, 'ro--' ) ylabel('y') xlabel('u/u_{max}') grid on legend('Computed','Laufer (1950)','location','southwest') end % Error checking. err = sqrt(sum((u-u_ref).^2)/sum(u_ref.^2)); if( ~isempty(fid) ) fprintf(fid,'\nL2 Error: %f\n',err) fprintf(fid,'\n\n') end out.err = err; out.pass = err<0.26; if ( nargout==0 ) clear fea out end