FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_NAVIERSTOKES8 2D Example for axisymmetric incompressible stationary flow in a constricted circular pipe.
[ FEA, OUT ] = EX_NAVIERSTOKES8( VARARGIN ) Sets up and solves stationary axisymmetric Poiseuille flow in a constricted circular pipe. The inflow profile is constant and the outflow should assume a parabolic profile. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- rho scalar {1} Density miu scalar {1} Molecular/dynamic viscosity uin scalar {1} Inflow velocity (constant/mean) r scalar {1} Channel radius l scalar {3} Channel length hmax scalar {0.1} Max grid cell size sf_u string {sflag1} Shape function for velocity sf_p string {sflag1} Shape function for pressure solver string 'openfoam'/{'} Use OpenFOAM or default solver iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'rho', 1; 'miu', 1; 'uin', 1; 'r', 1; 'l', 3; 'hmax', 0.05; 'sf_u', 'sflag1'; 'sf_p', 'sflag1'; 'solver', ''; 'iplot', 1; 'fid', 1 }; [got,opt] = parseopt( cOptDef, varargin{:} ); fid = opt.fid; % Geometry definition. r = opt.r; % Pipe radius. l = opt.l; % Pipe length. gobj1 = gobj_rectangle( 0, r, 0, l*2/3, 'R1' ); gobj2 = gobj_rectangle( 0, r/2, l*2/3, l, 'R2' ); gobj3 = gobj_circle( [r l*2/3], r/2, 'C1' ); fea.geom.objects = { gobj1 gobj2 gobj3 }; fea = geom_apply_formula( fea, 'R1+R2-C1' ); fea.sdim = { 'r' 'z' }; % Space coordinate names. % Grid generation. fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', fid ); % Boundary specifications. i_inflow = 1; % Inflow boundary number. i_outflow = 5; % Outflow boundary number. i_symmetry = [3 6]; % Symmetry boundary numbers. % Problem definition. fea = addphys( fea, {@navierstokes 1} ); % Add Navier-Stokes equations physics mode. fea.phys.ns.eqn.coef{1,end} = { opt.rho }; fea.phys.ns.eqn.coef{2,end} = { opt.miu }; fea.phys.ns.sfun = { opt.sf_u opt.sf_u opt.sf_p }; % Boundary conditions. dtol = 1e-3; i_in = findbdr( fea, ['z<=',num2str(dtol)] ); i_out = findbdr( fea, ['z>=',num2str(3-dtol)] ); i_sym = findbdr( fea, ['r<=',num2str(dtol)] ); fea.phys.ns.bdr.sel(i_in) = 2; fea.phys.ns.bdr.sel(i_out) = 3; fea.phys.ns.bdr.coef{2,end}{2,i_in} = opt.uin; fea.phys.ns.bdr.sel(i_sym) = 5; fea = parsephys(fea); % Parse physics mode. % Parse and solve problem. fea = parseprob(fea); % Check and parse problem struct. if( strcmp(opt.solver,'openfoam') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = openfoam( fea, 'nproc', 1, 'fid', fid, 'logfid', logfid ); fid = logfid; else jac.form = {[1;1] [1;1] [];[1;1] [1;1] []; [] [] []}; jac.coef = {'r*rho_ns*ur' 'r*rho_ns*uz' []; 'r*rho_ns*wr' 'r*rho_ns*wz' []; [] [] []}; fea.sol.u = solvestat( fea, 'fid', fid, 'nsolve', 2, 'jac', jac ); end % Error checking. r = linspace( 0, opt.r/2, 20 ); z = 0.9*opt.l*ones( 1, 20 ); U = evalexpr( 'sqrt(u^2+w^2)', [r;z], fea )'; u_fac = 4; % Due to contraction to 1/2 radius. U_ref = 2*opt.uin*u_fac*( 1 - ( r/(opt.r/2) ).^2 ); err = sqrt( sum((U-U_ref).^2)/sum(U_ref.^2) ); % Postprocessing. if( opt.iplot>0 ) figure subplot(1,3,1) postplot( fea, 'surfexpr', 'sqrt(u^2+w^2)', 'arrowexpr', {'u' 'w'} ) hold on plot( r, z, 'k--' ) title( 'Velocity field' ) subplot(1,3,2) postplot( fea, 'surfexpr', 'p', 'evaltype', 'exact', 'isoexpr', 'p' ) title( 'Pressure' ) subplot(1,3,3) plot( r, U, 'b-' ) hold on plot( r, U_ref, 'r-' ) title('Velcity profile at z=0.9*l') xlabel( 'Radius' ) legend( 'Computed', 'Reference', 'location', 'south' ) end out.err = err; out.pass = err<0.05; if( nargout==0 ) clear fea out end