FEATool Multiphysics
v1.17.1
Finite Element Analysis Toolbox
|
EX_PERIODIC2 2D Periodic Poisson equation example.
[ FEA, OUT ] = EX_PERIODIC2( VARARGIN ) 2D Periodic Poisson equation example. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- isol scalar 0/{1} Stationary/Time dependent solution iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'isol', 0; 'iplot', 1; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Unit square grid. fea.sdim = {'x' 'y'}; fea.grid = rectgrid( 40 ); % Define Poisson equation with custom physics mode. fea = addphys( fea, @customeqn, { 'u' } ); fea.phys.ce.eqn.seqn = '- ux_x - uy_y = f + u*eps'; % Boundary conditions. DirBC = true; NeuBC = ~DirBC; NeuBC_coef = @periodic_bc; % Assign periodic_bc solve hook function as boundary coefficient. fea.phys.ce.bdr.coef = { 'bcnd_ce', '', '', {}, ... { DirBC, NeuBC, DirBC, NeuBC }, [], ... { 0 , NeuBC_coef, 0, 0 } }; % Source term. fea.expr = { 'f' 'x*sin(5*pi*y) + exp(-((x-0.5)^2 + (y-0.5)^2)/0.02)' }; % Parse and solve problem. fea = parsephys( fea ); fea = parseprob( fea ); if( opt.isol==0 ) fea.sol.u = solvestat( fea, 'fid', opt.fid ); else fea.sol.u = solvetime( fea, 'tstop', -eps, 'fid', opt.fid ); end % Postprocessing. y = linspace( 0, 1, 100 ); ul = evalexpr( 'u', [zeros(1,100);y], fea ); ur = evalexpr( 'u', [ones(1,100);y], fea ); if( opt.iplot>0 ) subplot(1,2,1) postplot(fea, 'surfexpr', 'u', 'surfhexpr', 'u' ) % Plot solution on left and right sides. hold on fea.grid.p(1,:) = fea.grid.p(1,:) - 1; postplot(fea, 'surfexpr', 'u', 'surfhexpr', 'u' ) fea.grid.p(1,:) = fea.grid.p(1,:) + 2; postplot(fea, 'surfexpr', 'u', 'surfhexpr', 'u' ) subplot(1,2,2) plot( y, ul, 'k-' ) hold on plot( y, ur, 'r.' ) grid on xlabel( 'y' ) ylabel( 'u' ) legend( 'u(x=0)', 'u(x=1)', 'Location', 'South' ) end % Error checking. err = norm( ur - ul ); out.err = err; out.pass = err<1e-6; if ( nargout==0 ) clear fea out end %