|
FEATool Multiphysics
v1.17.5
Finite Element Analysis Toolbox
|
EX_PLANESTRESS3 NAFEMS benchmarks IC1-4 linear static stress analysis of a tapered membrane.
[ FEA, OUT ] = EX_PLANESTRESS3( VARARGIN ) NAFEMS benchmarks IC1-4 for linear static plane stress analysis of a tapered membrane. Four test cases are modeled, the first with a horizonal load on the left edge, second with horizonal volume force, third with a vertical shear load on the left edge, and fourth with a vertical volume (gravity) force.
Reference: Linear Statics Benchmarks Vol. 1, NAFEMS Ltd., 1987.
Accepts the following property/value pairs.
Input Value/{Default} Description
-----------------------------------------------------------------------------------
icase scalar 1-4/{1}
hmax scalar {0.3} Max grid cell size
sfun string {sflag2} Shape function for displacements
solver string {} Solver selection default, fenics
iplot scalar 0/{1} Plot solution (=1)
.
Output Value/(Size) Description
-----------------------------------------------------------------------------------
fea struct Problem definition struct
out struct Output struct
cOptDef = { 'E', 210e9;
'nu', 0.3;
'thick', 0.1;
'icase', 1;
'hmax', 0.3;
'sfun', 'sflag2';
'solver', '';
'iplot', 1;
'tol', 0.01;
'fid', 1 };
[got,opt] = parseopt(cOptDef,varargin{:});
fid = opt.fid;
% Geometry definition.
gobj = gobj_polygon( [0 4 4 0 0 0;0 1 3 4 2 0]', 'P1' );
fea.geom.objects = { gobj };
fea.sdim = { 'x' 'y' };
% Grid generation.
fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', fid );
% Add plane stress physics mode.
fea = addphys(fea,@planestress);
fea.phys.pss.eqn.coef{1,end} = { opt.nu };
fea.phys.pss.eqn.coef{2,end} = { opt.E };
fea.phys.pss.sfun = { opt.sfun opt.sfun };
if( opt.icase == 2 )
fea.phys.pss.eqn.coef{4,end} = { 9.81*7000 };
elseif( opt.icase == 4 )
fea.phys.pss.eqn.coef{5,end} = { -9.81*7000 };
end
% Set boundary conditions.
dtol = 0.1;
lbdr = findbdr( fea, ['x<',num2str(dtol)] ); % Left boundary number.
rbdr = findbdr( fea, ['x>',num2str(1-dtol)] ); % Right boundary number.
n_bdr = max(fea.grid.b(3,:)); % Number of boundaries.
bctype = mat2cell( zeros(2,n_bdr), [1 1], ones(1,n_bdr) );
bccoef = mat2cell( zeros(2,n_bdr), [1 1], ones(1,n_bdr) );
switch( opt.icase )
case {1,2}
[bctype{1,lbdr}] = deal(1);
if( opt.icase == 1 )
bccoef{1,rbdr} = 1e7/opt.thick;
end
fea.pnt(1).type = 'constr';
fea.pnt(1).index = [0;2];
fea.pnt(1).dvar = 'u';
fea.pnt(1).expr = 0';
fea.pnt(2).type = 'constr';
fea.pnt(2).index = [0;2];
fea.pnt(2).dvar = 'v';
fea.pnt(2).expr = 0';
case 3
[bctype{:,lbdr}] = deal(1);
bccoef{2,rbdr} = 1e7/opt.thick;
case 4
[bctype{:,lbdr}] = deal(1);
end
fea.phys.pss.bdr.coef{1,end} = bccoef;
fea.phys.pss.bdr.coef{1,5} = bctype;
% Parse and solve problem.
fea = parsephys(fea); % Check and parse physics modes.
fea = parseprob(fea); % Check and parse problem struct.
if( strcmp(opt.solver,'fenics') )
fea = fenics(fea,'fid',fid, 'nproc', 1);
else
fea.sol.u = solvestat(fea,'fid',fid); % Call to stationary solver.
end
% Postprocessing.
if( opt.icase <= 2 )
s_title = fea.phys.pss.eqn.vars{5,1};
s_expr = fea.phys.pss.eqn.vars{5,2};
else
s_title = fea.phys.pss.eqn.vars{7,1};
s_expr = fea.phys.pss.eqn.vars{7,2};
end
if ( opt.iplot>0 )
figure
postplot( fea, 'surfexpr', s_expr, 'isoexpr', s_expr )
title( s_title )
end
% Error checking.
s_02 = evalexpr( s_expr, [0;2], fea );
s_ref = [61.3, 0.247, 26.9, -0.2]*1e6;
out.stress = s_02;
out.err = abs(s_02 - s_ref(opt.icase))/s_ref(opt.icase);
out.pass = out.err < opt.tol;
if ( nargout==0 )
clear fea out
end