FEATool Multiphysics
v1.17.1
Finite Element Analysis Toolbox
|
EX_POISSON5 3D Poisson equation example on a unit sphere.
[ FEA, OUT ] = EX_POISSON5( VARARGIN ) Poisson equation on a unit sphere with source term f=1 and homogenous (zero) Dirichlet boundary conditions on the sphere surface. The exact solution to this problem is u_ref=(1-r^2)/6 where r is the radius from the origin. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- igrid scalar 1/{0} Cell type (0=quadrilaterals, 1=triangles) hmax scalar {0.35} Max grid cell size sfun string {sflag1} Shape function iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'igrid', 0; ... 'hmax', 0.35; ... 'refsol', '(1-(x^2+y^2+z^2))/6'; ... 'sfun', 'sflag1'; ... 'iphys', 1; ... 'icub', 2; ... 'iplot', 1; ... 'tol', 0.2; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Geometry definition. gobj = gobj_sphere(); fea.geom.objects = { gobj }; % Grid generation. switch opt.igrid case -2 fea.grid = blockgrid( 1, 1, 1, [-1 1;-1 1;-1 1] ); case -1 fea.grid = spheregrid(round(1/opt.hmax*4/7),round(1/opt.hmax*3/7)); fea.grid = hex2tet(fea.grid); case 0 fea.grid = spheregrid(max(2,5*round(1/opt.hmax*4/7)),max(1,5*round(1/opt.hmax*3/7))); case 1 fea.grid = gridgen(fea,'hmax',opt.hmax,'fid',fid,'dprim',false); end n_bdr = max(fea.grid.b(3,:)); % Number of boundaries. % Problem definition. fea.sdim = { 'x' 'y' 'z' }; % Coordinate names. if ( opt.iphys==1 ) fea = addphys(fea,@poisson); % Add Poisson equation physics mode. fea.phys.poi.sfun = { opt.sfun }; % Set shape function. fea.phys.poi.eqn.coef{3,4} = { 1 }; % Set source term coefficient. fea.phys.poi.bdr.coef{1,end} = repmat({opt.refsol},1,n_bdr); % Assign reference solution to all boundaries (Dirichlet). fea = parsephys(fea); % Check and parse physics modes. else fea.dvar = { 'u' }; % Dependent variable name. fea.sfun = { opt.sfun }; % Shape function. % Define equation system. fea.eqn.a.form = { [2 3 4;2 3 4] }; % First row indicates test function space (2=x-derivative + 3=y-derivative), % second row indicates trial function space (2=x-derivative + 3=y-derivative). fea.eqn.a.coef = { 1 }; % Coefficient used in assembling stiffness matrix. fea.eqn.f.form = { 1 }; % Test function space to evaluate in right hand side (1=function values). fea.eqn.f.coef = { 1 }; % Coefficient used in right hand side. % Define boundary conditions. fea.bdr.d = cell(1,n_bdr); [fea.bdr.d{:}] = deal(opt.refsol); % Assign reference solution to all boundaries (Dirichlet). fea.bdr.n = cell(1,n_bdr); % No Neumann boundaries ('fea.bdr.n' empty). end % Parse and solve problem. fea = parseprob(fea); % Check and parse problem struct. fea.sol.u = solvestat(fea,'fid',fid,'icub',opt.icub); % Call to stationary solver. % Postprocessing. if ( opt.iplot>0 ) figure postplot(fea,'surfexpr','u','selexpr','(y>0)','axequal','on') end % Error checking. s_err = ['abs(',opt.refsol,'-u)']; if ( size(fea.grid.c,1)==8 ) xi = [0;0;0]; else xi = [1/4;1/4;1/4;1/4]; end err = evalexpr0(s_err,xi,1,1:size(fea.grid.c,2),[],fea); ref = evalexpr0('u',xi,1,1:size(fea.grid.c,2),[],fea); err = sqrt(sum(err.^2)/sum(ref.^2)); if( ~isempty(fid) ) fprintf(fid,'\nL2 Error: %f\n',err) fprintf(fid,'\n\n') end out.err = err; out.tol = opt.tol; out.pass = out.err<out.tol; if ( nargout==0 ) clear fea out end