FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_RESISTIVE_HEATING1 Resistive heating of a tungsten filament.
[ FEA, OUT ] = EX_RESISTIVE_HEATING1( VARARGIN ) Example to calculate temperature generated by resistive heating of a tungsten spiral filament, such as for example in an incandescent bulb. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- ibc scalar 1{2} Boundary type (1=insulation, 2=radiation) isolve scalar 1{2} Solve type (1=stat.coupled, 2=split quasistatic) sfun string {sflag1} Shape function iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'ibc', 2; 'isolve', 2; 'sfun', 'sflag1'; 'iplot', 1; 'tol', 1e-2; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Set up geometry and grid. r_wire = 0.0005; l_spiral = 0.005; r_spiral = 0.004; fea.sdim = { 'x' 'y' 'z' }; fea.grid = gridrotate( gridrevolve( circgrid( 2, 3, r_wire ), 80, l_spiral, 3, r_spiral ), -pi/2, 2 ); n_bdr = max(fea.grid.b(3,:)); ib2 = findbdr( fea, 'y<1e-3 & y>-1e-3' ); ib1 = setdiff(1:n_bdr,ib2); % Problem constants and definitions. V0 = 0.2; % Voltage difference. sigma = 1/52.8e-9; % Electrical conductivity [1/Ohm/m]. rho = 19.25e3; % Density [kg/m3]. cp = 133.9776; % Specific heat capacity [J/kg/K]. k = 173; % Thermal conductivity [W/m/K]. if( opt.isolve==1 ) Q = [num2str(sigma),'*(Vx^2+Vy^2+Vz^2)']; % Resistive heating source term. else Q = 'qfunction'; % Resistive heating source term function. end Const = 5.670367e-8; % Constant for radiation BC (Stefan-Bolzmann constant). T0 = 20+273.15; % Initial temperature. Tamb = 80+273.15; % Mean ambient temperature. icub = str2num(opt.sfun(end))+1; % Numerical quadrature order. tmax = 20; % Maximum time for temperature simulation. dt = tmax/20; % Time step size. % Set up and solve electrostatics problem. feaV = fea; feaV = addphys( feaV, @conductivemediadc ); feaV.phys.dc.sfun = { opt.sfun }; feaV.phys.dc.eqn.coef{2,end} = {sigma}; % Electrical conductivity. feaV.phys.dc.bdr.sel(ib2) = 1; % Use Dirichlet / Electric potential BCs for end boundaries 57 and 58. feaV.phys.dc.bdr.coef{1,end}{ib2(1)} = V0; % Set electric potential on boundary 1 to V0 (boundary 57 is 0 by default). if( opt.isolve==2 ) feaV = parsephys( feaV ); feaV = parseprob( feaV ); u_V = solvestat( feaV, 'fid', opt.fid ); end % Set up and solve heat transfer problem. fea = addphys( fea, @heattransfer ); fea.phys.ht.sfun = { opt.sfun }; fea.phys.ht.eqn.coef{1,end} = {rho}; % Density. fea.phys.ht.eqn.coef{2,end} = {cp}; % Heat capacity. fea.phys.ht.eqn.coef{3,end} = {k}; % Thermal conductivity. fea.phys.ht.eqn.coef{7,end} = {Q}; % Heat source term. if( opt.ibc==1 ) fea.phys.ht.bdr.sel(ib1) = deal(3); % Use insulation flux boundary condition for all boundaries except the ends. else fea.phys.ht.bdr.sel(ib1) = deal(4); % Use generalized heat flux boundary condition for all boundaries except the ends. [fea.phys.ht.bdr.coef{4,end}{ib1}] = deal({0 0 0 Const Tamb}); end fea.phys.ht.bdr.sel(ib2) = deal(1); % Prescribe fixed ambient temperature at the end points. fea.phys.ht.bdr.coef{1,end}{ib2(1)} = T0; fea.phys.ht.bdr.coef{1,end}{ib2(2)} = T0; if( opt.isolve==2 ) % Add sigma and electric potential solution used by qfunction. fea.expr = { 's_sigma' '' '' sigma ; 'u_V' '' '' u_V }; fea = parsephys( fea ); fea = parseprob( fea ); l_write_qfunction() u_T = solvetime( fea, 'icub', icub, 'init', {T0}, 'tstep', dt, 'tmax', tmax, 'fid', opt.fid ); delete( fullfile(tempdir(),'qfunction.m') ); clear qfunction; end % Merge solutions. fea.phys.dc = feaV.phys.dc; if( isfield(fea,'dvar') ) fea = rmfield( fea, 'dvar' ); fea = rmfield( fea, 'eqn' ); end fea = parsephys( fea ); fea = parseprob( fea ); if( opt.isolve==1 ) fea.sol.u = solvestat( fea, 'icub', icub, 'fid', opt.fid, 'nlrlx', 1-0.5*(opt.ibc==2) ); u_T = fea.sol.u(1:fea.eqn.ndof(1),:); else fea.sol.u = [ u_T; repmat(u_V,1,size(u_T,2)) ]; end % Postprocessing. if( opt.iplot>0 ) subplot(1,2,1) postplot( fea, 'surfexpr', 'V' ) title( 'Electric potential, V') subplot(1,2,2) postplot( fea, 'surfexpr', 'T-273.15' ) title( 'Temperature, T [C]') end % Error checking. if( opt.isolve==1 ) if( opt.ibc==1 ) T_max_ref = 840; else T_max_ref = 688; end else if( opt.ibc==1 ) T_max_ref = 787; else T_max_ref = 680; end end out.err = abs( max(u_T(:)) - T_max_ref )/T_max_ref; out.pass = out.err < opt.tol; if( nargout==0 ) clear fea out end %-----------------------------