FEATool Multiphysics  v1.17.1
Finite Element Analysis Toolbox
ex_resistive_heating1.m File Reference

Description

EX_RESISTIVE_HEATING1 Resistive heating of a tungsten filament.

[ FEA, OUT ] = EX_RESISTIVE_HEATING1( VARARGIN ) Example to calculate temperature generated by resistive heating of a tungsten spiral filament, such as for example in an incandescent bulb. Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
ibc         scalar 1{2}            Boundary type (1=insulation, 2=radiation)
isolve      scalar 1{2}            Solve type (1=stat.coupled, 2=split quasistatic)
sfun        string {sflag1}        Shape function
iplot       scalar 0/{1}           Plot solution (=1)
                                                                                  .
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct

Code listing

 cOptDef = { 'ibc',      2;
             'isolve',   2;
             'sfun',     'sflag1';
             'iplot',    1;
             'tol',      1e-2;
             'fid',      1 };
 [got,opt] = parseopt(cOptDef,varargin{:});
 fid       = opt.fid;


% Set up geometry and grid.
 r_wire   = 0.0005;
 l_spiral = 0.005;
 r_spiral = 0.004;

 fea.sdim = { 'x' 'y' 'z' };
 fea.grid = gridrotate( gridrevolve( circgrid( 2, 3, r_wire ), 80, l_spiral, 3, r_spiral ), -pi/2, 2 );
 n_bdr = max(fea.grid.b(3,:));
 ib2 = findbdr( fea, 'y<1e-3 & y>-1e-3' );
 ib1 = setdiff(1:n_bdr,ib2);


% Problem constants and definitions.
 V0    = 0.2;         % Voltage difference.
 sigma = 1/52.8e-9;   % Electrical conductivity [1/Ohm/m].

 rho   = 19.25e3;     % Density [kg/m3].
 cp    = 133.9776;    % Specific heat capacity [J/kg/K].
 k     = 173;         % Thermal conductivity [W/m/K].
 if( opt.isolve==1 )
   Q   = [num2str(sigma),'*(Vx^2+Vy^2+Vz^2)'];   % Resistive heating source term.
 else
   Q   = 'qfunction'; % Resistive heating source term function.
 end

 Const = 5.670367e-8;       % Constant for radiation BC (Stefan-Bolzmann constant).
 T0    = 20+273.15;         % Initial temperature.
 Tamb  = 80+273.15;         % Mean ambient temperature.

 icub  = str2num(opt.sfun(end))+1; % Numerical quadrature order.
 tmax  = 20;                 % Maximum time for temperature simulation.
 dt    = tmax/20;            % Time step size.


% Set up and solve electrostatics problem.
 feaV = fea;
 feaV = addphys( feaV, @conductivemediadc );
 feaV.phys.dc.sfun = { opt.sfun };

 feaV.phys.dc.eqn.coef{2,end} = {sigma};    % Electrical conductivity.

 feaV.phys.dc.bdr.sel(ib2) = 1;                 % Use Dirichlet / Electric potential BCs for end boundaries 57 and 58.
 feaV.phys.dc.bdr.coef{1,end}{ib2(1)} = V0;     % Set electric potential on boundary 1 to V0 (boundary 57 is 0 by default).

 if( opt.isolve==2 )
   feaV = parsephys( feaV );
   feaV = parseprob( feaV );
   u_V  = solvestat( feaV, 'fid', opt.fid );
 end

% Set up and solve heat transfer problem.
 fea = addphys( fea, @heattransfer );
 fea.phys.ht.sfun = { opt.sfun };

 fea.phys.ht.eqn.coef{1,end} = {rho};       % Density.
 fea.phys.ht.eqn.coef{2,end} = {cp};        % Heat capacity.
 fea.phys.ht.eqn.coef{3,end} = {k};         % Thermal conductivity.
 fea.phys.ht.eqn.coef{7,end} = {Q};         % Heat source term.

 if( opt.ibc==1 )
   fea.phys.ht.bdr.sel(ib1) = deal(3);     % Use insulation flux boundary condition for all boundaries except the ends.
 else
   fea.phys.ht.bdr.sel(ib1) = deal(4);     % Use generalized heat flux boundary condition for all boundaries except the ends.
 [fea.phys.ht.bdr.coef{4,end}{ib1}] = deal({0 0 0 Const Tamb});
 end
 fea.phys.ht.bdr.sel(ib2) = deal(1);     % Prescribe fixed ambient temperature at the end points.
 fea.phys.ht.bdr.coef{1,end}{ib2(1)} = T0;
 fea.phys.ht.bdr.coef{1,end}{ib2(2)} = T0;

 if( opt.isolve==2 )
% Add sigma and electric potential solution used by qfunction.
   fea.expr = { 's_sigma' '' '' sigma ;
                'u_V'     '' '' u_V   };

   fea  = parsephys( fea );
   fea  = parseprob( fea );
   l_write_qfunction()
   u_T  = solvetime( fea, 'icub', icub, 'init', {T0}, 'tstep', dt, 'tmax', tmax, 'fid', opt.fid );
   delete( fullfile(tempdir(),'qfunction.m') );
   clear qfunction;
 end


% Merge solutions.
 fea.phys.dc = feaV.phys.dc;
 if( isfield(fea,'dvar') )
   fea = rmfield( fea, 'dvar' );
   fea = rmfield( fea, 'eqn'  );
 end
 fea = parsephys( fea );
 fea = parseprob( fea );
 if( opt.isolve==1 )
   fea.sol.u = solvestat( fea, 'icub', icub, 'fid', opt.fid, 'nlrlx', 1-0.5*(opt.ibc==2) );
   u_T = fea.sol.u(1:fea.eqn.ndof(1),:);
 else
   fea.sol.u = [ u_T; repmat(u_V,1,size(u_T,2)) ];
 end


% Postprocessing.
 if( opt.iplot>0 )
   subplot(1,2,1)
   postplot( fea, 'surfexpr', 'V' )
   title( 'Electric potential, V')

   subplot(1,2,2)
   postplot( fea, 'surfexpr', 'T-273.15' )
   title( 'Temperature, T [C]')
 end


% Error checking.
 if( opt.isolve==1 )
   if( opt.ibc==1 )
     T_max_ref = 840;
   else
     T_max_ref = 688;
   end
 else
   if( opt.ibc==1 )
     T_max_ref = 787;
   else
     T_max_ref = 680;
   end
 end
 out.err  = abs( max(u_T(:)) - T_max_ref )/T_max_ref;
 out.pass = out.err < opt.tol;


 if( nargout==0 )
   clear fea out
 end



%-----------------------------