FEATool Multiphysics  v1.17.1
Finite Element Analysis Toolbox
ex_robinbc1.m File Reference

Description

EX_ROBINBC1 1D Robin boundary condition example.

[ FEA, OUT ] = EX_ROBINBC1( VARARGIN ) Convection, diffusion, and reaction equation uxx+u*ux-u=exp(2x) on a line with a Robin boundary condition u(0)+ux(0)=2 and u(1)=exp(1), and exact solution exp(x). Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
hmax        scalar {1/10}          Grid cell size
sfun        string {sflag1}        Finite element shape function
iplot       scalar 0/{1}           Plot solution (=1)
                                                                                  .
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct

Code listing

 cOptDef = { 'hmax',   1/10;
             'sfun',   'sflag1';
             'iplot',  1;
             'icub',   2;
             'refsol', 'exp(x)';
             'tol',    3e-3;
             'fid',    1 };
 [got,opt] = parseopt(cOptDef,varargin{:});

 nx = round( 1/opt.hmax );

 fea.sdim  = {'x'};
 fea.grid  = linegrid(nx,0,1);
 fea.dvar  = {'u'};
 fea.sfun  = {opt.sfun};
 fea.eqn   = parseeqn( 'ux_x + u*ux_t - u_t = exp(2*x)', ...
                       fea.dvar, fea.sdim );
 fea.bdr.d = {[],opt.refsol};
 fea.bdr.n = {'2-u',[]};


% Parse and solve problem.
 fea       = parseprob(fea);           % Check and parse problem struct.
 fea.sol.u = solvestat(fea,'fid',opt.fid,'icub',opt.icub); % Call to stationary solver.


% Postprocessing.
 if( opt.iplot>0 )
   h1 = postplot( fea, 'surfexpr', 'u', 'color', 'b' );
   h2 = postplot( fea, 'surfexpr', opt.refsol, ...
                  'linestyle', '--', 'color', 'r' );
   grid on
   legend( [h1(1),h2(1)], 'computed solution', ...
           'analytic solution', 'location', 'northwest' )
   xlabel('x')
   ylabel('u')
   axis normal
 end


% Error checking.
 xi = [1/2; 1/2];
 s_err = ['abs(',opt.refsol,'-u)'];
 err = evalexpr0(s_err,xi,1,1:size(fea.grid.c,2),[],fea);
 ref = evalexpr0('u',xi,1,1:size(fea.grid.c,2),[],fea);
 err = sqrt(sum(err.^2)/sum(ref.^2));

 if( ~isempty(opt.fid) )
   fprintf(opt.fid,'\nL2 Error: %e\n',err)
   fprintf(opt.fid,'\n\n')
 end

 out.err  = err;
 out.tol  = opt.tol;
 out.pass = out.err<out.tol;
 if( nargout==0 )
   clear fea out
 end