FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_SCHRODINGER1 Schrodinger equation for the Hydrogen atom.
[ FEA, OUT ] = EX_SCHRODINGER1( VARARGIN ) Computation of energy levels and electron orbits for a 1-particle Hydrogen atom system using the Schrodinger equation in cylindrical coordiantes. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.1} Grid cell size (in meter scale) sfun string {sflag2} Finite element shape function iphys scalar 0/{1} Use physics mode to define problem (=1) or directly define fea.eqn/bdr fields (=0) or use core assembly functions (<0) iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'hmax', 0.05; 'sfun', 'sflag2'; 'iplot', true; 'tol', 0.02; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Geometry definition (in meters). fea.sdim = {'r', 'z'}; fea.geom.objects = { gobj_circle([0,0], 3, 'C1'), ... gobj_circle([0,0], 0.5, 'C2'), ... gobj_rectangle(-3, 0, -3, 3, 'R1'), ... gobj_rectangle(-3, 0, -3, 3, 'R2')}; fea = geom_apply_formula( fea, 'C1-R1' ); fea = geom_apply_formula( fea, 'C2-R2' ); % Grid generation. fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', fid ); % Scale geometry and grid to nanometer scale. s = 1e-9; fea = geom_apply_transformation( fea, fea.geom.tags, 0, s ); fea.grid.p = fea.grid.p * s; % Constants and expressions. me = 9.10939e-31; % Electron mass. ec = 1.6021773e-19; % Electron charge. hp = 6.626076e-34; % Planck's constant. e0 = 8.8541878e-12; % Electric capacitivity in vacuum. m = 0; % Ground state energy. fea.expr = { 'me', me; 'e', ec; 'hp', hp; 'e0', e0; 'C', '8*me*pi^2/hp^2'; 'm', m}; % Problem definition. fea = addphys(fea,@poisson); % Add Poisson equation physics mode. fea.phys.poi.sfun = { opt.sfun }; % Set FEM shape function. fea.phys.poi.eqn.seqn = ... 'C*r*u'' - r*(ur_r+uz_z) = 1+(C*r*e^2/(4*pi*e0*sqrt(r^2+z^2))-m^2/r)*u_t'; % fea.phys.poi.eqn.coef{1,end} = { 'C*r' }; % Set time coefficient. % fea.phys.poi.eqn.coef{2,end} = { 'r' }; % Set diffusion coefficient. % fea.phys.poi.eqn.coef{3,end} = { '1+(C*r*e^2/(4*pi*e0*sqrt(r^2+z^2))-m^2/r)*u' }; % Define source term coefficient. % Define boundary conditions (Homogenous Neumann on symmetry axis, and Dirichlet on sphere boundary.) fea.phys.poi.bdr.sel = [1 1 2 2 2]; % Parse and solve problem. fea = parsephys(fea); fea = parseprob(fea); [fea.sol.u, fea.sol.l] = solveeig( fea, 'sigma', -2.18e-18, ... 'neigs', 10, 'fid', fid ); % Error checking. lam = [-2.18e-18; -5.45e-19; -5.45e-19; -2.422e-19; -2.422e-19]; out.err = abs((lam - fea.sol.l(1:5))./lam); out.pass = all(out.err < opt.tol); % Postprocessing. if( opt.iplot>0 ) isol = 5; postplot( fea, 'surfexpr', 'u', 'solnum', isol ) title(sprintf('u(lambda(%d)) = %g', isol, fea.sol.l(isol))) end if( nargout==0 ) clear fea out end