FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_SWIRL_FLOW3 2D Axisymmetric Taylor-Couette (swirl) flow.
[ FEA, OUT ] = EX_SWIRL_FLOW3( VARARGIN ) Axisymmetric Taylor-Couette swirl flow in a tubular region where the inner cylindrical wall is rotating. Time dependent solution with periodic top and bottom boundaries.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- rho scalar {1} Density miu scalar {1} Molecular/dynamic viscosity omega scalar {300} Maximum angular velocity (of inner wall) tmax scalar {3} Maximum time nstep scalar {300} Number of time steps ri scalar {1.0} Inner radius ro scalar {1.5} Outer radius h scalar {3} Height of cylinder sf_u string {sflag1} Shape fcn for velocity sf_p string {sflag1} Shape fcn for pressure iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'rho', 1; 'miu', 1; 'omega', 300; 'tmax', 3; 'nstep', 300; 'ri', 1.0 'ro', 1.5; 'h', 3; 'sf_u', 'sflag1'; 'sf_p', 'sflag1'; 'iphys', 1; 'iplot', 1; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Geometry and grid generation. fea.sdim = {'r' 'z'}; ri = opt.ri; % Inner radius. ro = opt.ro; % Outer radius. h = opt.h; % Height of cylinder. fea.geom.objects = { gobj_rectangle(ri,ro,-h/2,h/2) }; n = 16; fea.grid = rectgrid( n, 6*n, [ri ro; -h/2 h/2] ); % Equation definition. if ( opt.iphys==1 ) fea = addphys(fea,@swirlflow); fea.phys.sw.eqn.coef{1,end} = { opt.rho }; fea.phys.sw.eqn.coef{2,end} = { opt.miu }; fea.phys.sw.sfun = [ repmat( {opt.sf_u}, 1, 3 ) {opt.sf_p} ]; fea.phys.sw.bdr.sel = [3 1 3 2]; fea.phys.sw.bdr.coef{2,end}{2,4} = sprintf( '%g*t/%g', opt.omega*ri, opt.tmax ); fea = parsephys(fea); else opt.sf_u = 'sflag2'; opt.sf_p = 'sflag1'; fea.dvar = { 'u', 'v', 'w', 'p' }; fea.sfun = [ repmat( {opt.sf_u}, 1, 3 ) {opt.sf_p} ]; c_eqn = { 'r*rho*u'' - r*miu*(2*ur_r + uz_z + wr_z) + r*rho*(u*ur_t + w*uz_t) + r*p_r = r*Fr - 2*miu/r*u_t + p_t + rho*v*v_t'; 'r*rho*v'' - r*miu*( vr_r + vz_z) + miu*v_r + r*rho*(u*vr_t + w*vz_t) + rho*u*v_t = r*Fth + miu*(v_r - 1/r*v_t)'; 'r*rho*w'' - r*miu*( wr_r + uz_r + 2*wz_z) + r*rho*(u*wr_t + w*wz_t) + r*p_z = r*Fz'; 'r*ur_t + r*wz_t + u_t = 0' }; fea.eqn = parseeqn( c_eqn, fea.dvar, fea.sdim ); fea.coef = { 'rho', opt.rho ; 'miu', opt.miu ; 'Fr', 0 ; 'Fth', 0 ; 'Fz', 0 }; % Boundary conditions. fea.bdr.d = { [] 0 [] 0 ; [] 0 [] sprintf( '%g*t/%g', opt.omega*ri, opt.tmax ) ; [] 0 [] 0 ; [] [] [] [] }; fea.bdr.n = cell(size(fea.bdr.d)); end % Fix pressure at p([r,z]=[ro,0]) = 0. [~,ix_p] = min( sqrt( (fea.grid.p(1,:)-ro).^2 + (fea.grid.p(2,:)-0).^2) ); fea.pnt = struct( 'type', 'constr', ... 'index', ix_p, ... 'dvar', 'p', ... 'expr', '0' ); % Parse and solve problem. fea = parseprob( fea ); if ( opt.iphys==1 ) fea.bdr.n{1}{1} = @periodic_vel_bc_1_3; fea.bdr.n{2}{1} = @periodic_vel_bc_1_3; fea.bdr.n{3}{1} = @periodic_vel_bc_1_3; else [fea.bdr.n{1:3,1}] = deal( @periodic_vel_bc_1_3 ); % Set periodic BCs. end fea.sol.u = solvetime( fea, 'ischeme', 1, 'tstep', opt.tmax/opt.nstep, 'tmax', opt.tmax, 'tolchg', inf, 'fid', fid ); % Postprocessing. if( opt.iplot ) subplot(1,2,1) postplot( fea, 'surfexpr', 'sqrt(u^2+w^2)', 'isoexpr', 'sqrt(u^2+w^2)', ... 'arrowexpr', {'u' 'w'}, 'arrowcolor', 'w', 'arrowspacing', [8 48] ) title('In-plane velocity') subplot(1,2,2) postplot( fea, 'surfexpr', 'v', 'isoexpr', 'v' ) title('Azimuthal velocity') end out = []; if( nargout==0 ) clear fea out end %