|
FEATool Multiphysics
v1.17.5
Finite Element Analysis Toolbox
|
SF_LINE_P4 1D Fourth order Lagrange shape functions for lines (P4).
[ VBASE, NLDOF, XLDOF, SFUN ] = SF_LINE_P4( I_EVAL, N_SDIM, N_VERT, I_DOF, XI, AINVJAC, VBASE ) Evaluates conforming fourth order P4 Lagrange shape functions on 1D line elements with values defined in the nodes and center. XI are Barycentric coordinates.
Input Value/[Size] Description
-----------------------------------------------------------------------------------
i_eval scalar: 1 Evaluate function values
>1 Evaluate values of derivatives
n_sdim scalar: 1 Number of space dimensions
n_vert scalar: 2 Number of vertices per cell
i_dof scalar: 1-5 Local basis function to evaluate
xi array [2,1] Local coordinates of evaluation point
aInvJac [n,3] Inverse of transformation Jacobian
vBase [n] Preallocated output vector
.
Output Value/[Size] Description
-----------------------------------------------------------------------------------
vBase [n] Evaluated function values
nLDof [4] Number of local degrees of freedom on
vertices, edges, faces, and cell interiors
xLDof [2,n_ldof] Local coordinates of local dofs
sfun string Function name of called shape function
nLDof = [2 0 0 3];
xLDof = [1 0 3/4 1/2 1/4;
0 1 1/4 1/2 3/4];
sfun = 'sf_line_P4';
switch i_eval % Evaluation type flag.
case 1 % Evaluation of function values.
switch i_dof % Basis function to evaluate.
case 1
vBase = (32*xi(1)^4)/3 - 16*xi(1)^3 + (22*xi(1)^2)/3 - xi(1);
case 2
vBase = (32*xi(1)^4)/3 - (80*xi(1)^3)/3 + (70*xi(1)^2)/3 - (25*xi(1))/3 + 1;
case 3
vBase = - (128*xi(1)^4)/3 + (224*xi(1)^3)/3 - (112*xi(1)^2)/3 + (16*xi(1))/3;
case 4
vBase = 64*xi(1)^4 - 128*xi(1)^3 + 76*xi(1)^2 - 12*xi(1);
case 5
vBase = - (128*xi(1)^4)/3 + 96*xi(1)^3 - (208*xi(1)^2)/3 + 16*xi(1);
end
case 2 % Evaluation of first derivative.
switch i_dof % Basis function derivative to evaluate.
case 1
dNdxi1 = ((8*xi(1) - 3)*(16*xi(1)^2 - 12*xi(1) + 1))/3;
case 2
dNdxi1 = ((8*xi(1) - 5)*(16*xi(1)^2 - 20*xi(1) + 5))/3;
case 3
dNdxi1 = - (512*xi(1)^3)/3 + 224*xi(1)^2 - (224*xi(1))/3 + 16/3;
case 4
dNdxi1 = 4*(2*xi(1) - 1)*(32*xi(1)^2 - 32*xi(1) + 3);
case 5
dNdxi1 = - (512*xi(1)^3)/3 + 288*xi(1)^2 - (416*xi(1))/3 + 16;
end
vBase = aInvJac(:,1) * dNdxi1;
case 22 % Evaluation of second derivatives.
switch i_dof % Basis function derivative to evaluate.
case 1
dNdxi1 = 128*xi(1)^2 - 96*xi(1) + 44/3;
case 2
dNdxi1 = 128*xi(1)^2 - 160*xi(1) + 140/3;
case 3
dNdxi1 = - 512*xi(1)^2 + 448*xi(1) - 224/3;
case 4
dNdxi1 = 768*xi(1)^2 - 768*xi(1) + 152;
case 5
dNdxi1 = - 512*xi(1)^2 + 576*xi(1) - 416/3;
end
vBase = -aInvJac(:,1) ./ aInvJac(:,3) * dNdxi1;
otherwise
vBase = 0;
end