FEATool Multiphysics
v1.17.1
Finite Element Analysis Toolbox
|
SF_LINE_P4 1D Fourth order Lagrange shape functions for lines (P4).
[ VBASE, NLDOF, XLDOF, SFUN ] = SF_LINE_P4( I_EVAL, N_SDIM, N_VERT, I_DOF, XI, AINVJAC, VBASE ) Evaluates conforming fourth order P4 Lagrange shape functions on 1D line elements with values defined in the nodes and center. XI are Barycentric coordinates.
Input Value/[Size] Description ----------------------------------------------------------------------------------- i_eval scalar: 1 Evaluate function values >1 Evaluate values of derivatives n_sdim scalar: 1 Number of space dimensions n_vert scalar: 2 Number of vertices per cell i_dof scalar: 1-5 Local basis function to evaluate xi array [2,1] Local coordinates of evaluation point aInvJac [n,3] Inverse of transformation Jacobian vBase [n] Preallocated output vector . Output Value/[Size] Description ----------------------------------------------------------------------------------- vBase [n] Evaluated function values nLDof [4] Number of local degrees of freedom on vertices, edges, faces, and cell interiors xLDof [2,n_ldof] Local coordinates of local dofs sfun string Function name of called shape function
nLDof = [2 0 0 3]; xLDof = [1 0 3/4 1/2 1/4; 0 1 1/4 1/2 3/4]; sfun = 'sf_line_P4'; switch i_eval % Evaluation type flag. case 1 % Evaluation of function values. switch i_dof % Basis function to evaluate. case 1 vBase = (32*xi(1)^4)/3 - 16*xi(1)^3 + (22*xi(1)^2)/3 - xi(1); case 2 vBase = (32*xi(1)^4)/3 - (80*xi(1)^3)/3 + (70*xi(1)^2)/3 - (25*xi(1))/3 + 1; case 3 vBase = - (128*xi(1)^4)/3 + (224*xi(1)^3)/3 - (112*xi(1)^2)/3 + (16*xi(1))/3; case 4 vBase = 64*xi(1)^4 - 128*xi(1)^3 + 76*xi(1)^2 - 12*xi(1); case 5 vBase = - (128*xi(1)^4)/3 + 96*xi(1)^3 - (208*xi(1)^2)/3 + 16*xi(1); end case 2 % Evaluation of first derivative. switch i_dof % Basis function derivative to evaluate. case 1 dNdxi1 = ((8*xi(1) - 3)*(16*xi(1)^2 - 12*xi(1) + 1))/3; case 2 dNdxi1 = ((8*xi(1) - 5)*(16*xi(1)^2 - 20*xi(1) + 5))/3; case 3 dNdxi1 = - (512*xi(1)^3)/3 + 224*xi(1)^2 - (224*xi(1))/3 + 16/3; case 4 dNdxi1 = 4*(2*xi(1) - 1)*(32*xi(1)^2 - 32*xi(1) + 3); case 5 dNdxi1 = - (512*xi(1)^3)/3 + 288*xi(1)^2 - (416*xi(1))/3 + 16; end vBase = aInvJac(:,1) * dNdxi1; case 22 % Evaluation of second derivatives. switch i_dof % Basis function derivative to evaluate. case 1 dNdxi1 = 128*xi(1)^2 - 96*xi(1) + 44/3; case 2 dNdxi1 = 128*xi(1)^2 - 160*xi(1) + 140/3; case 3 dNdxi1 = - 512*xi(1)^2 + 448*xi(1) - 224/3; case 4 dNdxi1 = 768*xi(1)^2 - 768*xi(1) + 152; case 5 dNdxi1 = - 512*xi(1)^2 + 576*xi(1) - 416/3; end vBase = -aInvJac(:,1) ./ aInvJac(:,3) * dNdxi1; otherwise vBase = 0; end