FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_HEATTRANSFER7 1D Transient heat diffusion with analytic solution.
[ FEA, OUT ] = EX_HEATTRANSFER7( VARARGIN ) Transient heat diffusion problem with analytic solution. A 1 m rod is kept at fixed temperature on one end and constant outward heat flux at the other end as in the following illustration.
+---------- L=1m ----------+ T = 25 q_n = 1 T(t=0) = 25
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.1} Grid cell size sfun string {sflag1} Finite element shape function solver string fenics/{} Use FEniCS or default solver ischeme scalar {2}/1/3 Time stepping scheme tmax scalar {0.2} Maximum time tstep scalar {0.01} Time step size iplot scalar {1}/0 Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'hmax', 0.1; 'sfun', 'sflag1'; 'solver', ''; 'ischeme', 2; 'tmax', 0.2; 'tstep', 0.01; 'nstbwe', 0; 'iplot', 1; 'tol', 1e-3; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); % Grid generation. fea.grid = linegrid( round(1/opt.hmax), 0, 1 ); % Problem definition. fea.sdim = { 'x' }; % Space coordinate name. fea = addphys( fea, @heattransfer ); % Add heat transfer physics mode. fea.phys.ht.sfun = { opt.sfun }; % Set shape function. % Equation coefficients. fea.phys.ht.eqn.coef{1,end} = 1; % Density. fea.phys.ht.eqn.coef{2,end} = 1; % Heat capacity. fea.phys.ht.eqn.coef{3,end} = 1; % Thermal conductivity. fea.phys.ht.eqn.coef{6,end} = { 25 }; % Initial temperature. % Boundary conditions. fea.phys.ht.bdr.sel = [ 4 1 ]; fea.phys.ht.bdr.coef{1,end} = { [] 25 }; fea.phys.ht.bdr.coef{4,end}{1}{1} = -1; % Parse physics modes and problem struct. fea = parsephys(fea); fea = parseprob(fea); % Compute solution. if( strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', opt.fid, ... 'tstep', opt.tstep, 'tmax', opt.tmax, 'ischeme', opt.ischeme ); tlist = fea.sol.t; else [fea.sol.u, tlist] = solvetime( fea, 'fid', opt.fid, 'init', {'T0_ht'}, 'ischeme', opt.ischeme, ... 'tmax', opt.tmax, 'tstep', opt.tstep, 'nstbwe', opt.nstbwe ); end % Postprocessing. T_ref = refsol( fea.grid.p', tlist(end) ); if( opt.iplot>0 ) postplot( fea, 'surfexpr', 'T', 'axequal', 0 ) title(['Temperature at t=',num2str(tlist(end))]) xlabel('x') ylabel('T') hold on plot( fea.grid.p, T_ref, 'r--' ) end % Error checking. T_sol = evalexpr( 'T', fea.grid.p, fea ); out.err = norm( abs(T_sol-T_ref)/T_ref ); out.pass = out.err<opt.tol; if( nargout==0 ) clear fea out end % -----------------------------------