FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
EX_HEATTRANSFER8 Space-time heat diffusion with analytic solution.
[ FEA, OUT ] = EX_HEATTRANSFER8( VARARGIN ) One dimensional transient heat diffusion problem converted to a 2D space-time finite element formulation with analytic solution. A 1 m rod is kept at fixed temperature on one end and constant outward heat flux at the other end as in the following illustration.
+---------- L=1m ----------+ T = 25 q_n = 1 T(t=0) = 25
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.1} Grid cell size in x-direction igrid scalar {0}/1/2 Cell type (0=quadrilaterals, 1=triangles, sfun string {sflag1} Finite element shape function solver string fenics/{} Use FEniCS or default solver tmax scalar {0.2} Maximum time tstep scalar {0.01} Time step discretization size (y-direction) iplot scalar {1}/0 Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'hmax', 0.025; 'igrid', 0; 'sfun', 'sflag1'; 'solver', ''; 'tmax', 0.2; 'tstep', 0.01; 'iplot', 1; 'tol', 1e-2; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); % Geometry definition. gobj = gobj_rectangle( 0, 1, 0, opt.tmax ); fea.geom.objects = { gobj }; % Grid generation. switch opt.igrid case 0 fea.grid = rectgrid( round(1/opt.hmax), ceil(opt.tmax/opt.tstep), [0, 1; 0, opt.tmax] ); case 1 fea.grid = gridgen( fea, 'hmax', min(opt.hmax,opt.tstep), 'fid', opt.fid ); case 2 fea.grid = rectgrid( round(1/opt.hmax), ceil(opt.tmax/opt.tstep), [0, 1; 0, opt.tmax] ); fea.grid = quad2tri( fea.grid, 1 ); end % Problem definition. fea.sdim = { 'x', 'yt' }; % Space and time coordinate names. fea = addphys( fea, @heattransfer ); % Add heat transfer physics mode. fea.phys.ht.sfun = { opt.sfun }; % Set shape function. % Equation coefficients. fea.phys.ht.eqn.coef{1,end} = 1; % Density (rho_ht). fea.phys.ht.eqn.coef{2,end} = 1; % Heat capacity (cp_ht). fea.phys.ht.eqn.coef{3,end} = 1; % Thermal conductivity (k_ht). fea.phys.ht.eqn.coef{4,end} = 0; % Convection in x-direction (u_ht). fea.phys.ht.eqn.coef{5,end} = 1; % Time convection coefficient (v_ht). fea.phys.ht.eqn.coef{6,end} = 0; % Heat source term (q_ht). fea.phys.ht.eqn.coef{7,end} = { 25 }; % Initial temperature. % Redefine equation. fea.phys.ht.eqn.seqn = '-k_ht*Tx_x + rho_ht*cp_ht*u_ht*Tx_t + rho_ht*cp_ht*v_ht*Tyt_t = q_ht'; % Boundary conditions. fea.phys.ht.bdr.sel = [ 1 1 2 4 ]; fea.phys.ht.bdr.coef{1,end} = { 25 25 [] [] }; fea.phys.ht.bdr.coef{4,end}{4}{1} = -1; % Parse physics modes and problem struct. fea = parsephys(fea); fea = parseprob(fea); % Compute solution. if( strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', opt.fid ); else fea.sol.u = solvestat( fea, 'fid', opt.fid ); end % Postprocessing. T_ref = refsol( fea.grid.p(1,:)', fea.grid.p(2,:)' ); if( opt.iplot>0 ) subplot(1,2,1) postplot( fea, 'surfexpr', 'T', 'surfhexpr', 'T', 'boundary', 'off' ) view(3) title( 'Computed Temperature' ) xlabel('x') ylabel('time') zlabel('T') axis( [0 1 0 opt.tmax 0.95*min(fea.sol.u) 1.05*max(fea.sol.u)] ) axis tight grid on subplot(1,2,2) fea.vars(1).name = 'T_ref'; fea.vars(1).descr = 'Reference Temperature'; fea.vars(1).data = T_ref(:); postplot( fea, 'surfexpr', 'T_ref', 'surfhexpr', 'T_ref', 'boundary', 'off' ) view(3) title( 'Reference Temperature' ) xlabel('x') ylabel('time') zlabel('T_{ref}') axis( [0 1 0 opt.tmax 0.95*min(fea.sol.u) 1.05*max(fea.sol.u)] ) axis tight grid on rotate3d('on') end % Error checking. T_sol = evalexprp( 'T', fea ); out.err = norm( abs(T_sol-T_ref)/T_ref ); out.pass = out.err<opt.tol; if( nargout==0 ) clear fea out end % -----------------------------------