FEATool Multiphysics
v1.17.2
Finite Element Analysis Toolbox
|
SU2 MATLAB SU2 CFD solver CLI interface.
[ U, TLIST, VARS ] = SU2( PROB, VARARGIN ) Export, solves, or imports the solved problem described in the PROB finite element struct using the SU2 CFD solver. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- mode check, export, solve, import Command mode(s) to call (default all) cfg default Default SU2 config turb scalar {0} Turbulence model: 0: none/laminar 1: Spalart-Allmaras, 2:k-omega (SST) init scalar {[]} Initial values []: init expressions i: use solution nproc scalar {numcores/2} Number of processors to use workdir default SU2 work directory fname default SU2 work filename logfname default SU2 log/output filename fid/logfid scalar {1} Log file/message output file handle hax handle Axis handle to plot convergence naxts scalar {250} Maximum number of time steps to plot
Also accepts the following SU2 cfg property/value pairs to set the cfg file during export
Property Value/{Default} Description ----------------------------------------------------------------------------------- fname default SU2 work filename solver string {INC_NAVIER_STOKES} SU2 governing equations/solver ischeme scalar/{0} Time stepping scheme 0 - Stationary 1 - Time stepping 2 - Dual time stepping (1st order) 3 - Dual time stepping (2nd order) tstep scalar/{0.1} Time step size tmax scalar/{1} Maximum simulation time wrtfreq scalar/{1} Frequency to output solution files/to screen tol scalar {1e-8} Stopping criteria for (P) residuals maxit scalar/{9999/20} Maximum number of iterations (stat/timedep) rho scalar {1.0} Density (constant) miu scalar {1.0} Viscosity (constant) upwind string {venk_wang/muscl} Discretization scheme, valid options are the central schemes JST and LAX-FRIEDRICH, or UPWIND (equivalent to FDS for incompressible, ROE for compressible) with MUSCL and slope limiting NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, BARTH_JESPERSEN, or VAN_ALBADA_EDGE init vector {[1,0,0]} Initial conditions (for velocity) restart string {} Restart (CSV) file mesh string {mesh.su2} SU2 mesh filename nsdim int {2} Number of space dimensions isaxi boolean {false} Axisymmetric mode (only compressible)
1) Laminar Hagen-Poiseuille flow in a channel with convergence plot. n = 20; rho = 1; miu = 1; uin = 1; fea.sdim = {'x' 'y'}; fea.geom.objects = { gobj_rectangle(0,3,0,1) }; fea.grid = rectgrid( 3*n, 1*n, [0 3;0 1] ); fea = addphys(fea,@navierstokes); fea.phys.ns.eqn.coef{1,end} = { rho }; fea.phys.ns.eqn.coef{2,end} = { miu }; fea.phys.ns.eqn.coef{5,end} = { uin }; fea.phys.ns.bdr.sel(2) = 4; fea.phys.ns.bdr.sel(4) = 2; fea.phys.ns.bdr.coef{2,end}{1,4} = uin; fea = parsephys( fea ); fea = parseprob( fea ); fea.sol.u = su2( fea, 'tol', 1e-6, 'hax', axes() ); figure subplot(2,1,1) postplot( fea, 'surfexpr', 'p', 'isoexpr', 'sqrt(u^2+v^2)', 'arrowexpr', {'u' 'v'} ) subplot(2,1,2), hold on, grid on xlabel('Velocity profile at outlet'), ylabel('y') x = 3*ones(1,100); y = linspace(0,1,100); U_ref = 6*uin*(y.*(1-y))./1^2; U = evalexpr( 'sqrt(u^2+v^2)', [x;y], fea ); plot( U_ref, y, 'r--', 'linewidth', 3 ) plot( U, y, 'b-', 'linewidth', 2.5 ) legend( 'Analytic solution', 'Computed solution' )